摘要:可再生能源有能力减少能源和环境危机的严重影响。在该部门引入了锂离子电池,作为一种解决方案,在储存领域具有高质量和体积能量密度的作用。研究人员使用相变材料开发了电池热管理系统,以改善电动汽车性能。模拟结果表明,PCM冷却可以降低电池温度波动并提高效率。研究表明,尽管电池寿命,价格,耐用性和安全性限制了PCM冷却可以显着提高电动汽车的性能。关键词:电池模块;热管理;相变材料;锂离子;造型;热管理;模拟;数学模型1。引言污染,气候变化和全球变暖的不断增加的问题使替代能源的使用至关重要。汽车行业的贡献现在集中在转向电动汽车上。由于其有效的峰值和平均电源率,电池是最实用的替代储能解决方案。锂离子电池技术是目前正在使用的几种电池技术中最广泛使用的,因为其特异性功率很高,能量密度,更长的寿命,减轻体重和缺乏记忆效应。这些电池的整体性能和耐用性受热敏感性的强烈影响。因此,基于相位的材料(PCM)的BTM已成为趋势。可用于锂离子电池系统的最佳操作,工作条件限制为15°C和45°C的狭窄温度范围,对于多电池模块,温度变化不得超过5°C。[1]电池安全性的几个方面可能导致电池寿命和性能进一步降解,例如由于在低温电池运行过程中化学迟钝而导致的次优性能,环境温度超过了电池,导致电池超出了高温限制与容量褪色的上限,以及对无效的电气不平衡的需求。节能热管理系统。The thermal management system is responsible to keep all the components within their temperature limits to ensure functionality and safety of the vehicle, while also generating pleasant temperatures for passengers in the vehicle interior[2].The present world energy economy is at serious risk with the substantial depletion of fossil fuels, rapid increase in the energy prices, and effect on the environment with the emission of Green House Gases (GHG) and the dependency on politically unstable fuel producing.电池热管理系统(BTM)的目的是维持电池安全性和有效使用,并确保电池温度在安全的操作范围内。[3]。传统的基于空气冷却的BTM不仅需要额外的功率,而且还无法满足具有高能量密度的新锂离子电池(LIB)包装的需求,而液体冷却BTMS则需要复杂的设备来确保有效的国家。通过使用PCM吸收热量,可以将电池组的温度长时间保持在正常工作范围内,而无需使用任何外部功率[4]。6x5、3x10和六角形阵列布置的液电池模块的热管理。使用商业CFD软件ANSYSICEPAK®进行高保真3-D CFD模拟。[5] PCM是指可以吸收或释放潜在
