摘要:水产养殖系统需要仔细考虑位置,因为位置决定了水质、污染影响和危险情况。移动性可能能够解决这些因素,同时还支持全年使用风能、波浪能和太阳能等可再生能源。本文以专门建造的移动式水产养殖船为例,结合可再生能源收集能力对其进行建模,以评估利用高可再生能源潜力为水产养殖作业提供动力的潜在好处。创建并调整了路线优化算法以模拟水产养殖平台的移动性,并与固定系统进行了成本基础比较。当结合多种资源时,可再生能源潜力的空间变化很小,这严重限制了移动式、可再生能源水产养殖系统的好处。另一方面,通过混合多种可再生能源(装机风电容量13千瓦、装机太阳能661平方米、特征宽度1米的波浪能转换器)持续收集能源表明,可以在不显著增加能源收集器成本的情况下实现移动平台对近海水产养殖的潜在益处(减轻环境和社会问题、对产量产生潜在的积极影响、避免危害等)。
2。HS Gill,Ak Shakya,Ch Lee。 皮肤过敏原免疫疗法的微针。 美国化学工程师研究所(AICHE),2019年,美国奥兰多。 3。 Ak Shakya,Ch Lee和Hs Gill,“涂层的微针介导的过敏原特异性免疫疗法用于治疗小鼠气道过敏”,哺乳动物皮肤的屏障功能,戈登研究研讨会(GRS),2019年,2019年,美国新罕布什尔州沃特维尔谷。 4。 Ak Shakya,Ch Lee,HS Gill。 过敏原免疫疗法的微针:气道过敏的小鼠模型中的体内功效。 美国化学工程师研究所(AICHE),2018年,美国匹兹堡。 5。 Ak Shakya,Ch Lee,HS Gill。 微针的皮肤免疫疗法用于过敏。 国际疫苗学会2016年,美国波士顿。 6。 Ak Shakya,Ch Lee,HS Gill。 涂有过敏原的微甲烷作为预防过敏免疫疗法的新方法。 生物医学工程协会2016年会议,美国明尼阿波利斯,美国。 7。 Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。HS Gill,Ak Shakya,Ch Lee。皮肤过敏原免疫疗法的微针。美国化学工程师研究所(AICHE),2019年,美国奥兰多。3。Ak Shakya,Ch Lee和Hs Gill,“涂层的微针介导的过敏原特异性免疫疗法用于治疗小鼠气道过敏”,哺乳动物皮肤的屏障功能,戈登研究研讨会(GRS),2019年,2019年,美国新罕布什尔州沃特维尔谷。4。Ak Shakya,Ch Lee,HS Gill。过敏原免疫疗法的微针:气道过敏的小鼠模型中的体内功效。美国化学工程师研究所(AICHE),2018年,美国匹兹堡。5。Ak Shakya,Ch Lee,HS Gill。微针的皮肤免疫疗法用于过敏。国际疫苗学会2016年,美国波士顿。 6。 Ak Shakya,Ch Lee,HS Gill。 涂有过敏原的微甲烷作为预防过敏免疫疗法的新方法。 生物医学工程协会2016年会议,美国明尼阿波利斯,美国。 7。 Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。国际疫苗学会2016年,美国波士顿。6。Ak Shakya,Ch Lee,HS Gill。涂有过敏原的微甲烷作为预防过敏免疫疗法的新方法。生物医学工程协会2016年会议,美国明尼阿波利斯,美国。 7。 Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。生物医学工程协会2016年会议,美国明尼阿波利斯,美国。7。Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。Ak Shakya,HS Gill。过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。2015年受控发行协会年度会议,苏格兰爱丁堡。8。Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。Ak Shakya,HS Gill。使用涂层微针的皮肤过敏原特异性免疫疗法。皮肤疫苗接种峰会2015年,瑞士。9。m gatica,HS Gill,Ak Shakya。通过微针递送椭圆蛋白,以防止小鼠的卵过敏。SACNAS全国会议,2014年,美国洛杉矶。 10。SACNAS全国会议,2014年,美国洛杉矶。10。Ak Shakya,kumar,KS Nandakumar。聚-N-异丙丙烯酰胺作为胶原蛋白诱导关节炎的辅助。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。 11。 srivastava,ak shakya,a kumar。 使用冷冻凝胶的细胞和生物分子的硼酸盐亲和力色谱法。 第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。 12。 Ak Shakya,kumar,KS Nandakumar。 热响应性聚-N-异丙丙烯酰胺作为实验性类风湿关节炎中的辅助。 年度会议与博览会生物材料学会2011年,美国奥兰多,美国。 13。 srivastava,ak shakya,a kumar。 基于组织工程应用的基于聚(N-乙烯基caprolactam)的冷冻凝胶支架:合成和生物物理表征。 年度会议与博览会,2010年生物材料学会,美国西雅图,美国西雅图,美国。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。11。srivastava,ak shakya,a kumar。使用冷冻凝胶的细胞和生物分子的硼酸盐亲和力色谱法。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。 12。 Ak Shakya,kumar,KS Nandakumar。 热响应性聚-N-异丙丙烯酰胺作为实验性类风湿关节炎中的辅助。 年度会议与博览会生物材料学会2011年,美国奥兰多,美国。 13。 srivastava,ak shakya,a kumar。 基于组织工程应用的基于聚(N-乙烯基caprolactam)的冷冻凝胶支架:合成和生物物理表征。 年度会议与博览会,2010年生物材料学会,美国西雅图,美国西雅图,美国。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。12。Ak Shakya,kumar,KS Nandakumar。热响应性聚-N-异丙丙烯酰胺作为实验性类风湿关节炎中的辅助。年度会议与博览会生物材料学会2011年,美国奥兰多,美国。13。srivastava,ak shakya,a kumar。基于组织工程应用的基于聚(N-乙烯基caprolactam)的冷冻凝胶支架:合成和生物物理表征。年度会议与博览会,2010年生物材料学会,美国西雅图,美国西雅图,美国。
摘要:水稻象鼻虫(Sitophilus oryzae)和较小的谷物bore(Rhyzopertha dominica)是非常重要的仓库害虫,因此它们的控制至关重要。在成人Sitophilus spp。生命的关键时刻,Sodalis Pierantonius细菌的强制性共生性质为天然抗生素和杀菌剂提供了新的视角。在这项研究中,我们使用纳米孔测序进行16S rRNA条形码来评估牛乳杆菌和多米尼卡菌的内部细菌组,并用庆大霉素对昆虫的内部微生物组进行了消毒。用庆大霉素(30 mg·g-1)治疗甲状腺素(假设缺乏DOPA(4-二羟基苯基丙氨酸)的合成,稳定Sodalis Pierantonius Symbiont)的外骨骨骼,并在lethal中稳定了这种效应。此外,我们还鉴定了活性个体中活性的生化生物标志物(酶促活性和底物利用率),但在死者中不活跃(例如,C8酯酶/脂肪酶/脂肪酶和α-羟丙烯蛋白酶)。
人类非常善于学习他们所处的环境。它们形成了灵活的周围环境空间表征,可以在空间觅食和导航过程中轻松利用这些表征。为了捕捉这些能力,我们提出了一个目标导向行为的深度主动推理模型,以及随之而来的信念更新。主动推理依赖于优化贝叶斯信念以最大化模型证据或边际可能性。贝叶斯信念是可观察结果原因的概率分布。这些原因包括代理的行为,这使得人们能够将规划视为推理。我们使用地理藏宝任务的模拟来阐明信念更新(支持空间觅食)以及相关的行为和神经生理反应。在地理藏宝任务中,目标是使用空间坐标在环境中找到隐藏的物体。在这里,合成代理通过推理和学习(例如,了解给定潜在状态的结果可能性)了解环境以到达目标位置,然后在本地觅食以发现为下一个位置提供线索的隐藏物体。
本研究旨在优化拟议的独立光伏 (PV)/风力涡轮机 (WT)/燃料电池 (FC) 混合可再生发电系统的尺寸组件。一种名为蝠鲼觅食优化 (MRFO) 的新型高效优化算法被采用来设计多目标函数下的混合系统的尺寸组件,以最小化能源成本 (COE) 并最小化电力供应损失概率 (LPSP)。真实案例研究应用于埃及苏伊士湾 (纬度 30.0,经度 32.5) 的阿塔卡市。为了确保所开发算法的高性能和稳定性,本研究测试了三种不同的系统配置 (PV + WT + FC、WT + FC 和 PV + FC)。此外,还提出了不同配置的统计指标,以确认所开发的 MRFO 技术的稳健性和可靠性。模拟结果证明了 MRFO 在解决所研究的优化问题方面具有很高的能力,收敛速度快,结果可靠,能够以最小的 COE 为负载供电。