这篇论文(博士学位)是由达特茅斯数字共享的这些论文和论文免费带给您的。已被达特茅斯数字共享授权管理人纳入达特茅斯学院博士学位论文。有关更多信息,请联系dartmouthdigitalcommons@groups.dartmouth.edu。
会聚不足:在近距离工作时无法维持双眼功能(保持两只眼睛协同工作)。通常,当聚焦近距离的单词或物体时,一只眼睛会向外转(间歇性外斜视)(AAPOS,2020 年)。内斜视:一种斜视(眼睛错位),其特征是一只或两只眼睛向内转。它可能是间歇性的或持续性的,可能在近距离注视、远距离注视或两者时发生。交叉可能主要发生在一只眼睛上,也可能在两只眼睛之间交替发生。它与斜视或外斜视相反。内斜视可能发生在任何年龄(AAPOS,2019 年)。外斜视:一种斜视形式,其中一只或两只眼睛向外转动。它与斜视或内斜视相反。外斜视可能不时发生(间歇性外斜视)或可能持续发生,并且在每个年龄组中都有发现(AAPOS,2019)。遮盖疗法:遮盖或遮盖疗法是弱视治疗的主要方法。遮盖未受影响或好的眼睛可为弱视眼提供单眼刺激,促进视觉发育。遮盖疗法用于改善视力,通常不能消除斜视(AAPOS,2021)。视轴矫正疗法:在验光办公室进行的一系列练习,通常每周进行一次,持续数月。视轴矫正眼部锻炼(视轴矫正术)由儿科眼科医生和视轴矫正师使用,是改善双眼功能的眼部锻炼,在办公室教授并在家中进行。视轴矫正术是由眼科专科内的视轴矫正师执行的一项成熟的职业。视轴矫正师评估和测量眼球偏差,管理弱视治疗并治疗间歇性小症状性眼球偏差(AAPOS,2020 年)。也称为视觉治疗。视轴矫正术专业包括视觉系统疾病的评估和治疗,特别是涉及双眼视觉和眼球运动 [美国认证视轴矫正师协会 (AACO) 2018]。药物惩罚疗法:滴入药物滴剂(例如阿托品)以惩罚视力较好的眼睛,迫使大脑注意来自视力较弱的眼睛的图像,促使大脑学会用视力较弱的眼睛看得更好(AAPOS,2021 年)。棱镜适应疗法:使用透明的三角形物体弯曲光线以允许视轴对齐,模拟斜视的缺失。还提出了更准确地确定偏差角度或目标角度,以确定斜视手术的偏差角度或目标角度 [美国眼科学会 (AAO),2018]。斜视:眼睛错位。斜视最常见的描述是眼睛错位的方向,例如内斜视、外斜视和上斜视 (AAPOS,2020)。视力恢复治疗 (VRT):一种基于计算机的家庭程序,旨在加强因创伤、中风、炎症或选择性手术切除脑肿瘤而导致的神经系统急性损伤后幸存的残留神经结构的视觉信息处理。有人认为,通过在治疗过程中反复激活,个人可以使用该计划来训练和改善其受损的视觉功能,从而在视野缺损中恢复有用的视力(NovaVision,2021 年)。视觉治疗:验光师将视觉治疗定义为发展或提高视觉技能和能力的尝试;提高视觉舒适度、轻松度和效率;并改变视觉信息的视觉处理或解释。视光学视觉治疗计划包括在数周至数月内进行的监督下在办公室和家中进行的强化练习。除了练习之外,还可以使用镜片(“训练眼镜”)、棱镜、滤光片、贴片、电子目标或平衡板(AAPOS,2020 年)。适用代码以下程序和/或诊断代码列表仅供参考,可能并不全面。本政策中列出的代码并不意味着代码描述的服务是涵盖的或不涵盖的健康服务。健康服务的福利覆盖范围由会员特定的福利计划文件和可能要求覆盖特定服务的适用法律决定。包含代码并不意味着任何报销权利或保证索赔支付。其他政策和指南可能适用。
摘要:慢性踝关节不稳定性(CAI)患者经常表现出姿势对照,并依靠视觉信息来维持静态平衡以补偿降低的本体感受。疲劳会损害CAI患者外的神经肌肉控制,除了姿势控制外。但是,在CAI患者的单腿平衡测试中,功能疲劳是否会改变姿势控制和感觉组织策略,尚不清楚。本研究涉及对实验室环境中28名CAI患者的对照试验。每个参与者在功能性疲劳方案之前和之后,用眼睛睁开眼睛(EO)进行了单腿平衡测试(EO)。双向重复测量方差分析评估了结果变量的疲劳(Pre-pre-pre-Fatigue)×视觉(EO与EC)相互作用。此外,配对样本t检验检查了两种条件(前与效率)之间的差异,以进行时间限制时间(TTB)minima(%调制)。我们发现ML和AP TTBMEANS和AP TTBSD中的疲劳和视力条件之间的显着相互作用。%调制在AP TTBMEAN,ML TTBSD和AP TTBSD中疲劳后显着降低。总而言之,功能性疲劳协议与EO的静态姿势控制能力降低,但与EC保持不变。这表明,由于视觉依赖性较小,在疲劳下EO的平衡能力降低更为明显。这可能会在疲劳下增加踝关节扭伤的发生率。
未来的探险将通过执行外部活动(EVA)操作来探索和研究月球和火星的行星表面。当今的国际空间站(ISS)EVA运营需要对机组人员,太空西装,工具,系统和飞行团队进行复杂的编排,以计划,培训和执行有限的高级信息学。在本文中,NASA Johnson航天中心(JSC)的联合增强现实视觉信息系统(联合AR)项目团队描述了为太空服形式开发模块化增强现实(AR)设备的设计空间,以支持EVA的机组人员决策。联合AR产品是通过贸易研究和以前的EVA展示工作的市场分析来定义的。本文概述了定义的建筑设计决策,包括安全性关键因素,接口和计算机架构。这些研究的结果导致了原型设计,在此定义为关节AR产品。这项工作旨在使社区范围内的讨论能够实现与未来任务的必要西服AR功能和功能。
摘要:视觉在智能中扮演着特殊角色。视觉信息是感官信息的很大一部分,它被输入到人脑中,形成各种类型的认知和行为,使人类成为智能体。最近的进展导致了受大脑启发的机器视觉算法和模型的发展。这些方法的关键组成部分之一是利用生物神经元背后的计算原理。此外,先进的实验神经科学技术已经产生了不同类型的神经信号,这些信号携带着重要的视觉信息。因此,迫切需要绘制出从神经信号中读取视觉信息的功能模型。在这里,我们简要回顾了这一问题的最新进展,重点介绍了机器学习技术如何帮助开发用于处理各种类型神经信号的模型,从细尺度神经尖峰和单细胞钙成像到粗尺度脑电图 (EEG) 和脑信号的功能性磁共振成像记录。
a. 诺克斯堡是联邦军事保留区,限制进入。所有以官方身份行事并希望进入诺克斯堡的民间新闻媒体和 VI 制作代表必须首先向诺克斯堡的官方政府公共事务办公室 (PAO) 的军事或国防部 (DOD) 文职雇员申请许可。b.民间新闻媒体/VI 制作代表必须尽可能提前申请安装访问权限,并在提出请求时提供以下信息: (1) 其组织的名称 (2) 申请安装访问权限的原因 (3) 将在诺克斯堡执行任务的人员的姓名和职责(例如,记者、摄影师) (4) 申请安装访问权限的负责人的手机号码和电子邮件地址。
基因组编辑工具的出现,例如CRISPR-CAS9,已使遗传和基于细胞的疗法的发展用于治疗遗传疾病(Porteus,2019年)。进行了多项临床试验,以测试自体基因编辑的造血干细胞(HSC)的安全性治疗遗传疾病(NCT03655678,NCT04208529,NCT0485576肝脏的编辑以治疗经性淀粉样变性(ATTR,NCT04601051)或遗传血管性水肿(HAE,NCT05120830)(Frangoul等,2021; Gillmore等,2021)。值得注意的是,目前大多数开放临床试验都集中在基因敲除(KO)而不是同源性基因修复上。KO不需要同时递送同源序列来纠正引起疾病的突变,因此通常与较高的成功编辑效率有关。由于我们已经广泛的知识和骨髓中HSC移植的既定程序(Consiglieri等,2022)以及脂质纳米颗粒技术的可用性,因此这些示例的可行性得到了加速,并有效地靶向了肝脏(QIU等,20221)。Unfortunately, such techniques and technologies are not available for targeting the lung speci fi cally, therefore, expanding the use of genome editing tools to treat other inherited disorders, such as cystic fi brosis (CF), primary ciliary dyskinesia (PCD) and surfactant protein disorders impacting the lungs is of signi fi cant interest.图1总结了这些研究的发现。CF是由CF跨膜电导调节剂(CFTR)基因突变引起的。在这些情况下,体内基因组编辑受到挑战的限制,其中1)将基因组编辑试剂递送到所需的细胞中,基因校正所需的同源重组需要CRISPR-CAS9和CRISPR-CAS9和同源DNA才能将其传递到同一细胞中,以及2)对理想细胞/干细胞的长期疾病矫正的理解。EX-VIVO基因编辑可能是一种更有效的方法,但是基因编辑的细胞和调理方案的递送,使上皮接受细胞的植入而没有损害患者的肺功能,但仍表现出重要的挑战。在本研究主题中,我们提供了四篇文章,描述了产生自体基因校正的气道基底细胞(BCS),移植气道BC的努力,并讨论了扩展这些工具以治疗影响肺泡的表面活性剂蛋白质疾病的潜力。一个主要挑战是气道干细胞的有效基因校正,同时保持其再生潜力。许多基因校正工作都集中在CF上,因为它是影响肺部最有特征的遗传疾病之一(Suzuki等,2020; Vaidyanathan等,2020)。在CFTR中已经描述了2000多种不同的突变,因此,人们对替换整个CFTR编码序列的兴趣引起了极大的兴趣,以开发适用于所有CF患者的治疗。但是,CFTR编码序列(4,500 bp)接近常用腺相关病毒的包装极限
摘要:神经科学界最重要的挑战之一是了解人脑的工作原理。神经影像技术的最新进展已经证实,可以通过功能磁共振成像(即fMRI)来解码一个人的思想,记忆和情绪,因为它可以通过满意的时空分辨率来衡量人类大脑的神经激活。然而,fMRI数据的前所未有的规模和复杂性提出了重新制定新科学分析工具的关键计算瓶颈。鉴于机器学习在神经科学中的作用越来越重要,因此提出了许多机器学习算法来分析fMRI数据的大脑活动。在本文中,我们主要对机器学习方法进行全面,最新的审查,用于分析以下三个方面的神经活动,即大脑图像功能 - 对齐,大脑活动模式分析和视觉刺激重建。此外,还提供了在线资源和关于大脑模式分析的开放研究问题,以方便未来的研究。
编号 5040.07 2013 年 2 月 21 日 包含变更 1,2020 年 4 月 22 日 ATSD(PA) 主题:视觉信息 (VI) 制作 参考:见附件 1 1. 目的。 本指令: a. 根据国防部指令 (DoDD) 5122.05(参考 (b))中的授权,重新发布国防部指令 (DoDI) 5040.07(参考 (a)),以实施 DoDI 5040.2(参考 (c))中制定的政策,并分配与管理和预算办公室通告 A-130(参考 (d))和 DoDD 5105.74(参考 (e))一致的职责。 b. 制定国防部政策并分配 VI 制作的创建、采购和生命周期管理的责任。更新国防生产管理组 (DPMG) 的组织、成员和职能。 d. 合并并取消 DoDI 5040.09(参考 (f))。 2. 适用范围 a. 本指令适用于国防部长办公室、各军事部门、参谋长联席会议主席办公室和联合参谋部、作战司令部、国防部监察长办公室、国防机构、国防部实地活动部门以及国防部内所有其他组织实体(以下统称为“国防部组成部分”)。 b. 本指令的规定不适用于:(1)商业广播或电视娱乐或新闻节目,或由国防媒体活动 (DMA) 运营的美国武装部队广播电视服务提供的信息节目
自 2018 年 7 月版本以来,国防部视觉信息风格指南 (VISG) 的临时版本对视觉信息书写风格和程序进行了几项小改动和澄清。此版本对程序、元数据、道德标准或基本标题书写没有重大更改,但是,预计 2020 年版本会对元数据和程序进行更改。本指南的修改是国防媒体活动、国防 VI 指导委员会 (DVISC) 和视觉信息编辑委员会 (VIEB) 密切协调后做出的,后者由来自五个军种的 VI 专家组成。VI 风格指南可在 https://www.dimoc.mil/VI-Training/DoD-VI-Style-Guide/ 下载。它已获准公开发布并可无限制分发。如果您对本指南的未来版本有任何建议或意见,请通过我们的客户服务表提交您的意见,网址为 http://www.dimoc.mil/Customer-Service/Contact-Us/。