https://doi.org/10.20575/00000013 Polar Data Journal,Vol。 4,55–60,2020年4月ⓒ2020年国家极地研究所。 这项工作是根据创意共享归因4.0国际许可证分发的。https://doi.org/10.20575/00000013 Polar Data Journal,Vol。4,55–60,2020年4月ⓒ2020年国家极地研究所。这项工作是根据创意共享归因4.0国际许可证分发的。
L. Lee 3,4 , Shanmei He 2 , Cheng Peng 2 , Ding Pei 1 , Yiwei Li 7 , Chenyue Hao 8 , Haoran Yan 5 , Hanbo Xiao 1 , Han Gao 1 ,
动脉高血压是一个严重的公共卫生问题。由于久坐的生活方式和肥胖症流行,原发性动脉高血压的患病率每年增加。但是,不应忽略继发性高血压的存在。次要高血压的一种形式是单基因高血压,这是一种基因依赖性疾病,与中度至严重的耐药性高血压以及较高的DE静态神经和心血管并发症的风险更高。应在共存水和电解质不平衡或稀有的患者中考虑,并以早熟或延迟的青春期,生长不足和脑臂状态考虑。CHAR开发特征包括水和电解质平衡的损害,最常见于低钾血症和代谢性碱中毒。鉴定具有单基因高血压的患者对于实施适当的治疗并降低并发症的风险至关重要。
执行摘要 尽管最近有关于猎人角造船厂 (HPS) 清理工作拙劣的报道,但公众从未被充分告知导致污染的海军放射性活动范围之广以及环境控制不力。许多人被误导认为这些活动主要与几艘暂时停泊在猎人角的带有放射性的船只以及其他一些未指明但有限的活动有关。然而,几十年来 HPS 使用大量多种放射性核素的作业规模远远超出了人们的普遍理解。这反过来又造成了比海军迄今为止承认的更为广泛的污染可能性 — — 数十种放射性核素影响到 HPS 的所有部分。HPS 的核活动可以追溯到原子时代之初。 1945 年 7 月 16 日“三位一体”爆炸发生数小时后,美国海军印第安纳波利斯号从亨特斯角驶往太平洋的天宁岛,随行的还有全世界一半的高浓缩铀和“小男孩”原子弹的零部件。8 月 6 日,原子弹被装载到埃诺拉·盖伊号上,投向广岛。不到一年后,太平洋进行了战后首次核试验。第二次试验在比基尼环礁泻湖进行,结果严重失控。大量放射性物质污染了数百艘船只,导致海军大部分舰队丧失作战能力。仅这次试验就有 79 艘放射性船只被带到亨特斯角进行“净化”,包括用喷砂和蒸汽清洁船只上的放射性物质,而这又有可能将污染转移到整个亨特斯角。由于放射性无法通过物理方法中和,因此实际效果中的“净化”仅仅意味着将其从放射性船只转移到 Hunters Point。来自这些太平洋原子弹试验船的 60 多万加仑放射性污染燃油在 HPS 的锅炉中燃烧,这可能会广泛传播污染。位于 HPS 的 HPS 海军放射防御实验室 (NRDL) 参与了 1950 年至 1958 年的每一次核武器试验。这些原子弹和氢弹试验产生了大量高放射性核武器碎片,并将其带到了 HPS。除了核弹污染和碎片之外,NRDL 的放射性物质许可证还允许在 Hunters Point 使用大量各种放射性物质,用于武器效应研究和其他目的。例如:
•将完成环境信息量(EIV),以评估所选捕获,运输和存储地点的任何与NEPA相关的问题。•将对所有考虑的来源进行CO2来源可行性研究。•将进行管道饲料研究,以包括连接从源到存储设施的CO2的管道。•在确定和表征所有潜在风险后,将制定降低风险计划。•将制定一项存储现场开发计划,以记录开发三个存储设施以最大化存储容量的策略,同时最大程度地降低风险,描述存储设施的要素以及拟议项目寿命的成本计划。•该项目将启动每个存储设施最终项目投资决策所需的业务和财务计划和文件。•该项目将通过有针对性的社区外展计划来制定彻底的社会考虑,并影响战略,以教育公众并促进能源和环境正义,以确保项目福利是由包括不利社区(DACS)在内的地方和地区社区实现的。5
执行摘要 尽管最近有关于猎人角造船厂 (HPS) 清理工作拙劣的报道,但公众从未被充分告知导致污染的海军放射性活动范围之广以及环境控制不力。许多人被误导认为这些活动主要与几艘暂时停泊在猎人角的带有放射性的船只以及其他一些未指明但有限的活动有关。然而,几十年来 HPS 使用大量多种放射性核素的作业规模远远超出了人们的普遍理解。这反过来又造成了比海军迄今为止承认的更为广泛的污染可能性 — — 数十种放射性核素影响到 HPS 的所有部分。HPS 的核活动可以追溯到原子时代之初。 1945 年 7 月 16 日“三位一体”爆炸发生数小时后,美国海军印第安纳波利斯号从亨特斯角驶往太平洋的天宁岛,随行的还有全世界一半的高浓缩铀和“小男孩”原子弹的零部件。8 月 6 日,原子弹被装载到埃诺拉·盖伊号上,投向广岛。不到一年后,太平洋进行了战后首次核试验。第二次试验在比基尼环礁泻湖进行,结果严重失控。大量放射性物质污染了数百艘船只,导致海军大部分舰队丧失作战能力。仅这次试验就有 79 艘放射性船只被带到亨特斯角进行“净化”,包括用喷砂和蒸汽清洁船只上的放射性物质,而这又有可能将污染转移到整个亨特斯角。由于放射性无法通过物理方法中和,因此实际效果中的“净化”仅仅意味着将其从放射性船只转移到 Hunters Point。来自这些太平洋原子弹试验船的 60 多万加仑放射性污染燃油在 HPS 的锅炉中燃烧,这可能会广泛传播污染。位于 HPS 的 HPS 海军放射防御实验室 (NRDL) 参与了 1950 年至 1958 年的每一次核武器试验。这些原子弹和氢弹试验产生了大量高放射性核武器碎片,并将其带到了 HPS。除了核弹污染和碎片之外,NRDL 的放射性物质许可证还允许在 Hunters Point 使用大量各种放射性物质,用于武器效应研究和其他目的。例如:
早上好,我们尽最大努力改善自己、家庭和社会。过去几年,这一现实更加明显。我们每个人的努力共同成就了马来西亚今天这个伟大的国家。然而,可悲的是,一片失望的阴云笼罩着这项伟大的工作。我深知你们对政治家越来越愤世嫉俗,越来越失去信心,更悲惨的是,对彼此也越来越失去信心。然而,我们不能忘记,你们的牺牲、你们的毅力和你们在一切都与你们作对时坚持下去的精神,使我们度过了一场同时发生政治和经济危机的全球疫情。进步是一条奔腾的河流,我们不能让它停滞不前。我们已经到了历史性的时刻,我们在巨大的多样性中团结一致,尊重彼此的差异,必须思考如何让我们的国家更加繁荣,如何打击腐败和不平等的祸害,如何实现我们年轻人的愿望——让他们取得比我们更大的成功,去梦想比我们想象的更远大的梦想——以及如何为我们的国家塑造一个更有希望的未来。
1.2 即使是最乐观的国际政府减排协议评估也是基于将全球变暖限制在 1.5 摄氏度以下。如果不采取行动,到 2050 年,夏季降雨量可能会下降多达 24%,而且暴雨会变得更加强烈。冬季降雨量将增加多达 16% 2 ,这些变化将影响我们的福祉、自然环境和经济。1.3 应对气候变化的复杂而广泛的影响需要持续的投资和长期规划,但在 2021 年,英国气候变化委员会的气候变化风险评估 3 对英国各地的进展提出了严厉批评。1.4 尽管如此,刘易舍姆议会仍致力于建立该行政区面临的洪水风险的强有力证据基础,并采取行动应对这些风险。这项工作对于保护我们最脆弱的居民和社区的安全至关重要,同时也创造了机遇。绿化城市地区并认识到水是一种宝贵的资源可以丰富当地社区。树木和绿色基础设施在减缓和管理水流方面可以发挥重要作用,同时还能提供生物多样性、空气质量、遮荫等一系列其他益处,并且往往是任何当地社区高度重视的一部分。
基于硫代构化相位变化材料(PCM)的光子记忆细胞的实现引起了人们的关注,因为它们的快速,可逆和非易失性编程功能。[1]在硅光子平台上整合PCM存储器单元,例如GE 2 SB 2 TE 5(GST)和Aginsbte(AIST),[2] [2]可以使全观内存处理,并在其电子交通方面具有显着的优势,并在带状,速度,速度,速度,速度,速度,速度,速度,速度和并行处理中。[3,4]在开发光学逻辑门,[5,6]可恢复可填充的Photonic电路,[7-9]电气控制的光子记忆细胞,[10,11]等离激源性波导开关,[12,13] Neuro-neuro启发的光子Synapes,[14]和Neural Net-Net-net-net-net-net-net-net-net-net-net-net-net-Net-net-net-net-Net-net-net-Net-net-net-net-Ner ner Net-net-net-nerter Worts中。[15,16]先前的研究系统地研究了光子记忆细胞对二硝基二硝酸盐仪(SI 3 N 4)和硅启用器(SOI)平台的性能,[17,18],在这些平台上,从基线(完全结晶的状态)观察到了单调增加的透射率,该传播是作为拟合程序的拟合功率。这个完善的单调光学编程使可变的可变性能够归因于Hebbian学习的基本生物神经突触的峰值依赖性可塑性(STDP)。[14]值得注意的是,最近在各种光电平台上开发了人工突触,例如[19],基于Chalcogenide玻璃波波[20]和H-BN/WSE 2异质结构。[21]在STDP中,神经元之间的连接强度,即突触重量或突触效率,根据神经元的输出和输入尖峰的相对时机进行调整。[22]突触可塑性的基本公式,即突触重量的变化可以表示为δw¼f(δt),其中δt p p p pre,t pre,t post和t pre分别是后和神经前的时间。δT<0带有δW<0和δT> 0引入长期抑郁(LTD),并带有δW> 0的长期增强(LTP)。
为了确保世界粮食生产并使农业更加可持续,迫切需要采取替代方法来保护农作物免受疾病侵害。迄今为止,对病原体的遗传抗性主要基于单个显性抗性基因,这些基因介导对入侵者的特定识别,并且通常会被病原体变体迅速破坏。干扰植物易感性 (S) 基因提供了一种替代方案,为植物提供了被认为更持久的隐性抗性。S 基因使植物疾病得以建立,其失活为农作物的抗性育种提供了机会。然而,S 基因功能的丧失可能会产生多效性影响。基因组编辑技术的发展有望提供强大的方法来精确干扰农作物 S 基因功能并减少权衡。