摘要:脑脊液(CSF)是发现神经系统疾病生物标志物的重要基质。然而,CSF中蛋白质浓度的高动态范围阻碍了不靶向的质谱法检测最少丰富的蛋白质生物标志物。因此,对大脑内部的分泌过程有更深入的了解是有益的。在这里,我们旨在探讨脑蛋白是否以及如何预测CSF的分泌。通过将策划的CSF蛋白质组和人蛋白质图集的脑升高蛋白质组相结合,将脑蛋白分类为CSF或非CSF分泌。机器学习模型接受了一系列基于序列的特征的培训,以区分CSF和非CSF组,并有效地预测蛋白质的大脑起源。分类模型如果使用高置信度CSF蛋白,则在曲线下达到0.89的面积。最重要的预测特征包括亚细胞定位,信号肽和跨膜区域。分类器良好地概括为较大的大脑检测到的蛋白质组,并能够正确预测通过亲和力蛋白质组学鉴定的新型CSF蛋白。除了阐明蛋白质分泌的潜在机制外,受过训练的分类模型还可以支持生物标志物候选者的选择。关键字:脑蛋白质组,脑脊液,流体生物标志物,机器学习,蛋白质分泌■简介
在大规模低地表轨道卫星星座迅速部署之后,在这些环境中利用商业现成(COTS)设备的全部计算潜力已成为一个紧迫的问题。然而,由于陆地构造与太空中的卫星平台之间的固有差异,理解此问题远非直接。在本文中,我们通过介绍有关卫星上COTS计算设备的治疗控制,电源管理和性能的首次测量研究来缩小这一知识差距的重要一步。我们的测量结果表明,卫星平台和COTS计算设备在温度和能量方面很明显地相互作用,从而在卫星计算上构成了主要约束。此外,我们分析了塑造船上COTS计算设备特征的关键因素。我们为未来的研究提供了指南,以优化用于计算目的的此类设备。最后,我们发布了数据集,以促进卫星计算中的进一步研究。
摘要 — 本研究提出了一种简单的加密解决方案,用于保护计算机应用中常用的灰度和彩色数字图像。由于这些图像用途广泛,保护它们对于防止未经授权的访问至关重要。本文的方法使用基本操作来处理图像的二进制矩阵。这些具体操作包括将 8 列矩阵扩展至 64 列,将其重新组织为 64 列,将其分成四个块,并使用秘密索引密钥对列进行混沌处理。这些密钥由四组常见的混沌逻辑参数生成。每组参数执行混沌逻辑映射模型以生成混沌密钥,然后将其转换为索引密钥。该索引密钥在加密过程中对列进行混沌处理,在解密过程中进行反向操作。该加密方法保证了密钥空间的安全性,从而能够抵御黑客攻击。由于解密过程对精确的私钥值敏感,因此加密图像是安全的。私钥通常是混沌逻辑参数,这使得加密具有弹性。该方法非常方便,因为它支持任意大小和类型的图像,而无需修改加密或解密技术。混洗取代了传统数据加密方法中复杂的逻辑过程,简化了加密过程。我们将使用多张照片进行实验,以评估所提出的策略。加密和解密后的照片将被检查,以确保该方法符合加密标准。速度测试还将把所提出的方法与现有的加密方法进行比较,以展示其通过缩短加密和解密时间来加速图片加密的潜力。
摘要:在全球生物多样性面临的威胁不断升级的情况下,DNA 条形码是评估和监测物种多样性的重要方法。我探索了 DNA 条形码作为一种强大而可靠的生物多样性评估工具的潜力。首先全面回顾现有文献,深入研究 DNA 条形码的理论基础、方法和应用。广泛研究了各种 DNA 区域(如 COI 基因)作为通用条形码的适用性。此外,在 DNA 条形码的背景下评估了不同 DNA 测序技术和生物信息学工具的优势和局限性。为了评估 DNA 条形码的有效性,对包括陆地、淡水和海洋栖息地在内的各种生态系统进行了采样。从收集的样本中提取的 DNA 经过目标条形码区域的扩增和测序。将获得的 DNA 序列与参考数据库进行比较,可以对采样的生物进行识别和分类。研究结果表明,即使在形态鉴定具有挑战性的情况下,DNA 条形码也能准确识别物种。此外,它还揭示了隐蔽和濒危物种,有助于保护工作。我还通过分析遗传数据来研究遗传多样性模式和不同分类群之间的进化关系。这项研究有助于加深对 DNA 条形码及其在生物多样性评估中的适用性的了解。这种方法的优势(例如速度、准确性和成本效益)以及有待改进的领域被强调。通过解开遗传密码,DNA 条形码增强了我们对生物多样性的了解,支持保护计划并为生态系统的可持续管理提供基于证据的决策。
心室松弛和保存的左心室射血分数的损害是心力衰竭的两个主要特征,保留的射血分数(HFPEF)是困难的临床状况。HFPEF患者的治疗选择仍然很少,尽管其频率上升和对发病率和死亡率的负面影响,因此需要采取创造性方法来增强结果。在这些人中看到的血栓栓塞风险增加引发了有关抗凝HFPEF治疗中相关性的问题。尽管抗凝抗凝作用降低(HFREF)和其他高风险心血管疾病,但抗凝抗凝对心力衰竭有益,其HFPEF的疗效和安全性提出了具有挑战性的治疗挑战。抗凝剂一直是HFPEF中临床试验的主题,但结果却是矛盾的,只给临床医生提供了一些与做出决定的信息。对潜在的出血危害的担忧,特别是在具有其他合并症的敏感老年HFPEF患者中,决策过程变得更加困难。在本叙事综述中对HFPEF中心力衰竭与抗凝药物之间的联系进行了详尽的分析。在HFPEF中,心脏纤维化和内皮功能障碍会产生促血栓形成环境,正如这段经文中所强调的那样。还涵盖了创新生物标志物研究和尖端成像技术的最新发展,这可能会提供可能从抗凝治疗中受益的HFPEF患者。可以通过使用基于风险分类和个性化治疗选择的精确医学策略来解决此治疗难题。本评论强调需要进行更多的研究,以在个性化治疗和共同决策的框架内建立HFPEF中抗凝作用的最佳用途。要成功管理血栓栓塞风险并减少HFPEF患者的出血后果,必须进行精心设计的临床研究并提高我们对HFPEF病理生理学的理解。这些事态发展最终可能会改善患有这种困难而神秘的疾病的人们的预后和生活质量。
神经干细胞(NSC)由于其强大的神经保护性和再生性质而成为细胞治疗的候选者的非常重要的希望。使用NSC的临床前研究表明,有足够的令人鼓舞的结果,可以对更深入的临床应用进行更深入的研究。 然而,我们对神经发生及其潜在机制的了解仍然不完整。 为了更好地理解它们,似乎有必要表征神经干细胞生态位的所有组成部分,并发现它们在生理和病理学中的作用。 使用NSC在体内带来挑战,包括有限的细胞存活和宿主组织内的整合不足。 识别可能影响这些结果的被忽视因素变得关键。 在这篇综述中,我们对大脑中存在的基本元素,脑脊液(CSF)的影响进行了更深入的研究,该元素仍然相对尚未探索。 其在神经发生中的作用可能有助于帮助找到神经系统疾病的新型治疗解决方案,最终促进了我们对中枢神经系统(CNS)再生和修复的知识。使用NSC的临床前研究表明,有足够的令人鼓舞的结果,可以对更深入的临床应用进行更深入的研究。然而,我们对神经发生及其潜在机制的了解仍然不完整。为了更好地理解它们,似乎有必要表征神经干细胞生态位的所有组成部分,并发现它们在生理和病理学中的作用。使用NSC在体内带来挑战,包括有限的细胞存活和宿主组织内的整合不足。识别可能影响这些结果的被忽视因素变得关键。在这篇综述中,我们对大脑中存在的基本元素,脑脊液(CSF)的影响进行了更深入的研究,该元素仍然相对尚未探索。其在神经发生中的作用可能有助于帮助找到神经系统疾病的新型治疗解决方案,最终促进了我们对中枢神经系统(CNS)再生和修复的知识。
此预印本版的版权持有人于2025年1月18日发布。 https://doi.org/10.1101/2025.01.13.632885 doi:biorxiv Preprint
摘要:脂肪组织是能量平衡的中心参与者,表现出明显的代谢柔韧性,通常在肥胖症和2型糖尿病(T2D)中受到损害。脂肪细胞内的线粒体功能障碍会导致脂质处理效率低下和氧化应激增加,从而共同促进了肥胖及其并发症中心的全身代谢破坏。本评论探讨了线粒体在肥胖和T2D的背景下,线粒体在改变主要脂肪细胞类型(白色,棕色和米色)的代谢功能中所起的关键作用。具体而言,在白色脂肪细胞中,这些功能障碍会导致脂质加工受损和增加的氧化应激负担,从而加剧了代谢性障碍。相反,线粒体功能不受损害,没有其热能能力,从而降低了棕色脂肪细胞中最佳能量消耗的能力。米色脂肪细胞独特地结合了白色和棕色脂肪细胞的功能特性,在适当的刺激下具有帽质脂肪细胞的形态学相似性,同时拥有帽质脂肪细胞,以转化为富含线粒体,能量燃烧的细胞。每种类型的脂肪细胞都会显示出独特的代谢特征,该特征受每种细胞类型的线粒体动力学的控制。这些独特的线粒体代谢表型受包括转录因子,共激活因子和酶的专业网络的调节,这些网络共同确保了细胞能量过程的精确控制。有力的证据表明,在因果关系与肥胖引起的T2D的因果关系中,脂肪细胞线路的代谢和上游调节剂有缺陷。旨在改善脂肪细胞线粒体功能的有针对性干预措施为增强全身性大量营养素氧化提供了有前途的治疗途径,从而可能减轻肥胖症。理解脂肪细胞中线粒体功能的进步强调了打击肥胖和相关合并症的方法的关键转变。重新点燃脂肪组织中卡路里的燃烧,以及其他重要的代谢器官,例如肌肉和肝脏,鉴于脂肪组织在能量储存和释放中的广泛作用至关重要。
文件描述:美国国家航空航天局 (NASA) 历史记录解密指南,2018 年 请求日期:2020 年 3 月 31 日 发布日期:2020 年 5 月 11 日 发布日期:2020 年 6 月 8 日 文件来源:FOIA 请求 NASA 总部 300 E Street, SW Room 5Q16 Washington, DC 20546 传真:(202) 358-4332 电子邮件:hq-foia@nasa.gov governmentattic.org 网站(“本网站”)是第一修正案赋予言论自由的网站,是非商业性的,向公众免费开放。本网站及其提供的材料(例如本文件)仅供参考。governmentattic.org 网站及其负责人已尽一切努力使这些信息尽可能完整和准确,但是,可能存在印刷和内容上的错误和遗漏。 governmentattic.org 网站及其负责人对任何个人或实体因 governmentattic.org 网站或本文件中提供的信息而直接或间接造成的任何损失或损害(或声称造成的损失或损害)不承担任何责任。网站上发布的公共记录是通过适当的合法渠道从政府机构获得的。每份文件都标明了来源。对网站内容的任何疑虑都应直接向相关文件的发布机构提出。GovernmentAttic.org 对网站上发布的文件内容不承担任何责任。
摘要。本文旨在直接分析量子计算算法的能力,特别是 Shor 和 Grovers 算法,分析其时间复杂度和强力能力。Shor 算法使我们能够以比传统系统快得多的速度找出大素数的素因数。这对依赖于传统算法无法计算大素数素因数的经典密码系统构成了威胁。Grover 算法使我们的计算机系统搜索能力提高了一倍,这将对密码系统密钥和哈希的强力能力产生重大影响。我们还分析了这些算法对当今经典密码系统的影响,以及可以对安全算法进行的任何重大改进,以使其更安全。