MaxRC(最大比率合并)是一种独特的解调技术,在 NLOS(非视距)条件下,当与分集配置中的多个天线一起使用时,可以创造强大的优势。该技术分析每个天线输入,然后纠正由于天线去相关而导致的多个输入的任何相位关系。然后,它将比例幅度组合起来,以聚合链路内的能量。在单个天线输入上聚合的能量称为分集改进因子。该因子的范围可以从两个天线输入的 4 dB 一直到六个天线输入的 11 dB,具体取决于天线输入的数量和天线输入的多径信道特性。MRC 已在其 DVB-T、LMS-T 和 SCM 解调平台中实施了 Max RC。
IV单元车辆无线技术和网络9 0 0 9无线系统框架图和组件的概述,传输系统 - 调制/编码,接收器系统概念 - 解调/解码,无线网络,对车辆自治的应用以及应用于车辆自治,计算机网络的基础知识 - 事物网络,无线网络和无线网络和划分无线网络和divairnation and difcompants of Wieling Networking and divalsing
4.2.2 调制和解调................................................................................................ 135 4.2.2.1 基本原理 .............................................................................................. 135 4.2.2.2 线性调制方案............................................................................... 136 4.2.2.3 非线性调制方案............................................................................... 138 4.2.2.4 编码调制....................................................................................... 139 4.2.2.5 频谱整形....................................................................................... 141 4.2.2.6 加性高斯白噪声信道的误差概率。2.6.4 高性能天线......................................................................................... 194 4.2.6.5 馈线系统基本原理.................................................................... 197 4.2.6.6 系统复用滤波器............................................................................. 203
4.2.2 调制和解调................................................................................................ 135 4.2.2.1 基本原理 .............................................................................................. 135 4.2.2.2 线性调制方案............................................................................... 136 4.2.2.3 非线性调制方案............................................................................... 138 4.2.2.4 编码调制....................................................................................... 139 4.2.2.5 频谱整形....................................................................................... 141 4.2.2.6 加性高斯白噪声信道的误差概率。2.6.4 高性能天线......................................................................................... 194 4.2.6.5 馈线系统基本原理.................................................................... 197 4.2.6.6 系统复用滤波器............................................................................. 203
part-B:使用Scilab/Matlab/simulink或LabView1。模拟NRZ,RZ,半鼻涕和凸起的余弦脉冲,并生成二进制极性信号传导的眼图。2。模拟脉冲代码调制和解调系统,并显示波形。3。模拟QPSK发射器和接收器。绘制信号及其星座图。4。通过模拟二进制DPSK的非连锁检测来测试二进制差分相移键系统的性能。
摘要 基于线性调频扩频(CSS)的无线通信在无线传感器网络(WSN)中得到了广泛的应用,这些传感器一般传输速率较慢,对数据速率的要求越来越高,然而由于CSS的传输速率较低,仍存在许多问题有待研究。本文介绍了一种基于线性调频的调制方法。与BOK(二进制正交键控)和DM(直接调制)方法不同,该调制技术是将多普勒频移植入线性调频信号中。该调制技术在单个脉冲内实现M进制调制。通过计算压缩脉冲峰值在脉冲持续时间内的位置,或通过在匹配滤波器中使用不同的参考线性调频信号来实现解调。
如今,矢量信号分析仪 (VSA) 用于在研究、制造和原型设计中测量数字信号的特性。现代 VSA 通常使用 > 20 GHz 的载波频率和高达 200 MHz 的解调带宽。随着新通信设备的出现,带宽预计将大幅增长,例如参见 [1]。VSA 使用各种架构,而通常输入信号在使用至少 12 位 A/D 转换器进行多次下变频后在基带中采样,信号的同相和正交分量由正交解调确定。解调器的标量(幅度)响应可以使用校准的功率计通过计量可追溯性确定,但由于 VSA 的原理,没有关于相位的信息。可追溯性是 ISO/IEC 17025 对校准实验室和仪器制造商的一项关键要求。在 [2] 中,概述了使用快速数字采样示波器 (DSO) 进行可追溯的幅度和相位特性测量的策略。VSA 和 DSO 都使用了宽带多正弦激励,而测量信号对两种仪器来说是共同的,可以通过反卷积去除。选择多正弦波形是因为相邻音调之间的幅度和相位关系是可计算的。DSO 可通过电光采样 (EOS) 进行追溯,它定义了仪器响应中频率分量的相对时间 [3]。NIST(美国)[4]、NPL(英国)[5] 和 PTB(德国)[6] 已经开发了这样的 EOS 系统。VSA 的详细内部架构只有其制造商知道,目前计量实验室面临着这些仪器可追溯校准的问题。然而,使用 DSO [2] 的方法相对复杂,不适合商业校准实验室的常规测量。本文提出了一种可追溯的方法
通信可以广泛定义为信息从一个点转移到另一点。当将信息在任何距离内传达时,通常都需要通信系统。在通信系统中,信息传输经常是通过将信息叠加到电磁波上的,该信息充当信息信号的载体。然后将此调制载体传输到接收到的所需目的地,并通过解调获得原始信息信号。使用以无线电频率以及微波和毫米波频率运行的电磁载波波和毫米波频率开发了该过程的复杂技术。但是,也可以使用从频率的光范围选择的电磁载体来实现“通信”。
网络定理、网络图、节点和网格分析。时域和频域响应。镜像阻抗和无源滤波器。双端口网络参数。传递函数、信号表示。电路分析的状态变量法、交流电路分析、瞬态分析。逻辑系列、触发器、门、布尔代数和最小化技术、多振荡器和时钟电路、计数器环、波纹。同步、异步、上下移位寄存器、多路复用器和多路分解器、算术电路、存储器、A/D 和 D/A 转换器。调制指数、频谱、AM 生成(平衡调制器、集电极调制器)、幅度解调(二极管检测器其他形式的 AM:双边带抑制载波、DSBSC 生成(平衡调制器)、单边带抑制载波、SSBSC 生成和相位调制、调制指数。