首先引入时,单光子计数检测器在同步基因上重塑晶体学。他们的快速读数速度启用了,例如,旋转角度的无快速数据收集和切片,并增强了新实验技术(如Ptychography)的开发。在最佳条件下,单光子计数检测器提供无限的动态范围,图像噪声仅受传入光子的泊松统计限制。从单个光子中计算脉冲,从本质上讲是使探测器如此成功的原因,也会引起主要缺点,这是由于模拟前端脉冲堆积而导致的高光子弹药效率的丧失。要充分利用衍射限制的光源,下一代单光子计数器需要以与增加的伏特量相同的数量级来提高其计数率能力。此外,由于较高的频道,需要快速帧速率(几个kHz)才能应对较短的停留时间。带有多个比较器和计数器的检测器架构可以为能量分辨成像打开新的可能性,而像素间交流可以克服收费共享和降低像素角效率损失引起的问题。将单光子计数检测器耦合到高Z传感器,以进行硬X射线检测(> 20 keV)和低增益的雪崩二极管(LGADS)以进行软X射线,以利用全部辐射光谱的新光源的增加。在本文中,我们提出了提高第四代同步源的单光子计数检测器性能的可能策略,并将它们比较它们以对集成检测器充电。
产生 X 射线的第一步是通过 25-35 kV 的大电位差加速电子。当电子撞击钼靶时,它们会通过称为轫致辐射(断裂辐射)的过程减速。当小质量带电粒子(例如电子)经过大质量带电粒子(例如钼原子核)附近时,就会产生 X 射线。电子通过多次散射原子核而快速减速,从而导致发射多条 X 射线,在极少数情况下,当电子将其所有动能都交给单个原子核时,会发射出一条高能 X 射线。最后一个过程对应于 X 射线能谱的终点能量,这可通过查看图 2 中所示的光谱左端来观察。钼表面(阳极)与入射电子束成一定角度,以利于在特定方向产生 X 射线。图 2 显示了钼靶的能量谱。距离其产生点不远处是一个准直管,它允许一条狭窄的水平 X 射线带通过,到达结晶的 NaCl 靶。当 NaCl 靶(搁置在测角仪上)相对于入射 X 射线的角度倾斜刚好正确(θ)时,就会发生建设性干涉,并且在位于 2 θ 角的盖革-穆勒管中可以观察到增加的计数率(计数/秒)。如图 3 所示。
摘要 利用BBO非线性晶体中的I型SPDC过程,我们产生了接近于最大纠缠贝尔态的偏振纠缠态,对于HV(DA)基,其高可见度(高亮度)为98.50±1.33%(87.71±4.45%)。作为非局部现实主义测试,我们计算了CHSH版本的贝尔不等式,发现它强烈违反经典物理或任何隐变量理论,S = 2.71±0.10。通过测量SPDC过程中的符合计数率,我们获得单光子探测器的量子效率约为(25.5±3.4)%,这与制造商的测量结果一致。正如预期的那样,我们验证了CC率与输入CW激光的泵浦功率的线性依赖关系,这可能有助于找到有效的二阶磁化率晶体。利用量子比特测量理论,包括基于 16 个偏振测量的线性集合的量子态断层重建,以及基于数值优化的最大似然技术,我们计算了物理非负定密度矩阵,这意味着准备状态的不可分离性和纠缠。通过最大似然密度算子,我们精确计算了纠缠度量,例如并发、形成纠缠、纠缠、对数负性,以及不同的纠缠熵,例如线性熵、冯诺依曼熵和 Renyi 2 熵。最后,这种高亮度和低速率纠缠光子源可用于实验室中的短距离量子测量。
摘要 - 超导纳米电视单光子探测器(SNSPDS)的可伸缩性,可重复性和操作温度一直是自设备首次提出以来的主要研究目标。最近将氦离子辐照作为SNSPD的后处理技术的创新可以使高检测效率更容易复制,但仍然知之甚少。此外,从高-T C材料中以微米范围的尺度制造探测器可以分别提高可伸缩性和工作温度。同时,在宽电线和诸如Diboride镁之类的更高T材料中制造成功的设备已被证明已被证明。在这项工作中,我们比较了硝酸氮化物和二吡啶镁探测器中的氦离子辐照,并与不同的材料堆栈进行了比较,以便更好地了解辐照的机制以及在有效剂量上封装层的实际意义。我们检查了实验有效剂量测试的效果,并将这些结果与相应材料堆栈中模拟预测的损伤进行了比较。在两种材料中,辐照都会导致计数率的提高,尽管对于硝酸盐而言,即使在测试最高的剂量为2的最高剂量下,这种增加也没有完全饱和。6×10 17离子/cm 2,而对于抗封闭的二氨基镁,即使是测试的最低剂量为1×10 15离子/cm 2的最低剂量似乎高于最佳。我们的结果证明了氦离子辐照到截然不同的设备和材料堆栈中的一般适用性,尽管具有不同的最佳剂量,并显示了这种后加工技术在显着提高SNSPD效率方面的可重复性和有效性。
早在1946年,J。A. Wheeler提出了一个实验,以验证一对理论的预测,即在n灭nih灭时发出的两个量子,具有零相对角动量的正电子 - 电子对,彼此之间是正确的。该建议涉及对各种方位角上两个an灭光子散射的巧合测量。Pryce和Ward'以及Snyder,Pasternack和Hornbostel报告了详细的理论研究。 '当两个计数器彼此成直角时,预测的最大不对称比率是当相机的共同平面物与2个。85,以8 = 82'的散射角出现。bleuler和bradt4使用了两个末端窗口6-m计数器作为检测器,并观察到与该理论不一致的不对称比。尽管如此,与结果相关的误差范围是如此之大,以至于使理论和实验之间的详细比较变得相当不利。同时,汉娜(Hanna)进行了类似的实验,并进行了更多的E%CIENT计数器排列,发现观察到的不对称比率始终小于所预测的不对称比。因此,通过使用更多的E%CIENT探测器和更有利的条件来重新分配此问题,这似乎是非常需要的。最近开发的闪烁计数器已被证明是可靠且高度高的伽马射线检测器。随着这种提高的效率,大约是G-M计数器的十倍,重合计数率将增加一百倍。被使用。在我们的实验中,两个RCA 5819摄影管和两个蒽晶体1x1xs。用这些蒽晶体获得的歼灭辐射的效率为7%至8%,与计算值相比有利。几何布置在图中示意性1。正电子源Cu〜被Deuteron Bombard the激活在哥伦比亚回旋子的铜靶上。采用电镀方法将CU活性与其他