QIAcuity 软件套件版本 2.5。(或更高版本)可以计算给定孔中完整(物理连接)分子和非完整(物理未连接)分子的百分比。此功能适用于最多 5 个目标的多路复用等级。在自动或手动设置每个通道的阈值设置后,QIAcuity 软件套件提供多个占用 CSV 文件的下载选项,其中包括完整或链接目标的百分比。根据数据分析期间选择的通道或目标数量,显示完整/链接分子百分比的计算值和 dPCR 特定数据,例如每个孔的 λ 和 λ 误差,可用于进一步解释结果。如果在 QIAcuity 软件套件中启用了重复和/或超孔功能,则多个占用 CSV 文件包含每个重复组和/或超孔的完整/链接分子百分比的计算值。
液相线温度 806 °C 1483 °F 固相线温度 775 °C 1427 °F 热膨胀系数 (CTE) 18.7 x 10 -6 /C, 适用于 20 – 850 °C 10.4 x 10 -6 /°F, 适用于 68 – 1562 °F 热导率 (计算值) 170 W/m∙K 98 BTU/ft∙h∙ °F 密度 9.7 Mg/m³ 0.350 lb/in³ 屈服强度 (0.2% 偏移) 260 MPa 37.7 x 10 3 lb/in ² 拉伸强度 402 MPa 58.4 x 10 3 lb/in² 伸长率 (2in/50mm 量规截面) 22% 电阻率 46 x 10 -9 ohm∙m电导率 22 x 10 6 /ohm∙m 蒸汽压(计算值)
液相线温度 715 °C 1319 °F 固相线温度 605 °C 1121 °F 热膨胀系数 (CTE) 18.2 x 10 -6 /C,适用于 20 – 400 °C 10.1 x 10 -6 /°F,适用于 68 – 752 °F 热导率(计算值) 70 W/m∙K 40 BTU/ft∙h∙ °F 密度 9.7 Mg/m³ 0.35 lb/in³ 屈服强度(0.2% 偏移) 338 MPa 49 x 10 3 lb/in ² 拉伸强度 455 MPa 66 x 10 3 lb/in² 伸长率(2in/50mm 测量段) 21% 电阻率 106 x 10 -9 ohm∙m 电导率 9.4 x 10 6 /ohm∙m 蒸气压(计算值)
摘要:采用有限元法对某大跨度输电塔进行模态分析,并采用离散刚度法建立其气动弹性模型进行风洞试验。利用视觉位移测量仪和加速度计分别测量气动弹性模型的位移和加速度,并采用有限元计算计算塔的风致响应,与风洞试验结果进行对比。计算了阵风响应因子,并与规范和其他研究的结果进行了比较。结果表明:视觉位移仪能够很好地记录风洞中模型塔的振动;塔的加速度以一阶共振响应为主,位移以背景响应为主;纵向和横向的位移和加速度相近,表明侧风和顺风向响应大小相同。考虑雷诺数修正后试验得到的塔顶位移与数值模拟结果基本一致,风洞试验得到的塔顶阵风响应因子小于规范计算值,与有限元计算值接近。
抽象的制药工厂以含有青霉素的药物形式生产产品将产生对环境有害的废物。但是,在其操作中,尚不知道废物处理是否有效。这项研究的目的是对F/M比(食品与微生物比率)进行计算,这是可以做到的参数之一,以便能够找到使用活性污泥方法的废物处理的优化。主动污泥方法与存在可用于分解废物的固体泥浆沉积有关。以这种固体形式存在泥浆,将描述可以通过F/M比的计算来确定的危险物质。F/M比的计算需要一些数据,例如MLS(混合液体悬浮固体)水平,BOD水平(生物氧需求)以及进入WWTP的废物流量。结果显示了f/m比的计算值,该计算值倾向于低约0.01。基于发生的废物研究结果是最佳的。关键字:BOD,F/M比,活动泥,MLS,WWTP
现有的关于裂纹止裂的争议与标准无关(方程 3A 和 3B),而是由于动态分析的缺乏以及对 、 和 的相对贡献的不确定性。dA dA dA 在 SSC-242 [3] 中,Kanninen 对有限尺寸楔形载荷矩形 DCB 试件的扩展和止裂进行了完全动态分析。该分析表明,动能释放率 - dTD 与该试件扩展后期的应变能释放率 - dUD 相当。还发现 - dUD 和静态计算值之间存在很大差异,看来动态效应一般不能忽略。
如图 4b 所示,所提出的结构可以在 3.58 GHz 和 4.75 GHz 处创建两个传输零点。这些传输零点可以在 WPD 设计中抑制更多谐波。所提出的谐振器主要尺寸如下:d4 = 2.4、d5 = 1.4、d6 = 0.5、d7 = 1.2、d8 = 0.9、d9 = 0.1、d10 = 2.8、d11 = 0.11、W3 = 0.1、W5 = 2.1、W6 = 0.1、W7 = 0.1、W8 = 2.6、S3 = 0.1、S4 = 0.3、S5 = 0.2、S6 = 0.2、S7 = 0.2(单位均为毫米)。表 2 列出了所提出的主谐振器的 LC 等效模型的计算值。在 (13) 中计算了设计的主谐振器的 TF。
图 5.7:输出电压 V o 中的 IHD 评估 .............................................................. 124 图 5.8:LCLC 滤波器电容器 RMS 电流的评估 ........................................................ 126 图 5.9:LCLC 滤波器简化 ...................................................................................... 127 图 5.10:电压降与电感 ............................................................................................. 127 图 5.11:LCLC 滤波器谐振峰的阻尼 ...................................................................... 129 图 5.12:LCLC 滤波器的设计空间 ............................................................................. 130 图 5.13:用于 LCLC 滤波器设计验证的 SABER 模拟波形 ............................................. 133 图 5.14:具有并联 RC 阻尼的每相双交错 LCLC 滤波器 ............................................. 134 图 5.15:V PWM1 和 V PWM2 中的高频电压谐波 ............................................................. 136 图 5.16:跨L d ................................................................... 137 图 5.17:交错式 LCLC 滤波器的电感重量与电感 ........................................ 139 图 5.18:交错式 LCLC 滤波器的电感损耗与电感 ........................................ 139 图 5.19:耦合电感设计流程 ............................................................................. 141 图 5.20:交错式 LCLC 滤波器的 L d 与 L ............................................................. 143 图 5.21:交错式 LCLC 滤波器的 CI 与 L 的重量和损耗 ........................................ 143 图 5.22:交错式 LCLC 滤波器电容器 RMS 电流的评估 ........................................ 147 图 5.23:交错式 LCLC 滤波器电压降与电感的评估 ........................................ 148 图 5.24:交错式 LCLC 滤波器的设计空间 ........................................................ 149 图5.25:交错式 LCLC 滤波器的 SABER 仿真波形 ...................................................................... 151 图 5.26:滤波器重量比较 .............................................................................................. 153 图 6.1:原型系统的转换器拓扑 ...................................................................................... 156 图 6.2:电感器构造的关键阶段 ...................................................................................... 161 图 6.3:L 1 和 L 2 的测量电感 ...................................................................................... 162 图 6.4:绕组布置和构造的耦合电感 ............................................................................. 163 图 6.5:磁性元件重量比较 ............................................................................................. 165 图 6.6:转换器的热模型 ............................................................................................. 166 图 6.7:转换器的 3D 计算机模型 ................................................................................ 168 图 6.8:原型转换器 ................................................................................................ 169 图 6.9:原型转换器的详细 SABER 仿真模型 ...................................................................................... 170 图 6.10:PWM 波形比较,V PWM1 和 V PWM2 ........................................................................ 172 图 6.11:不同杂散电感值下的 V PWM1 ...................................................................................... 173 图 6.12:V PWM1 和 V PWM2 的 FFT 比较 ............................................................................. 175 图 6.13:电流比较,I 1 和 I 2 ............................................................................................. 176 图 6.14:I 1 和 I 2 的电流过冲比较 ............................................................................................. 176 图 6.15:I 1 和 I 2 的 FFT 比较 ............................................................................................. 178 图 6.16:V d 和 I d 的比较 ............................................................................................. 179 图 6.17:V d 和 I d 的特写比较 ............................................................................................. 179 图6.18:V d 和 I d 的 FFT 比较 ...................................................................................... 181 图 6.19:V 1 、IL 和 IC 的比较 ........................................................................................ 183 图 6.20:V o 和 I o 的比较 ............................................................................................. 185 图 6.21:V o 和 I o 的 FFT 比较 ...................................................................................... 186 图 6.22:测量值和计算值的转换器损耗比较 ............................................................. 187 图 6.23:转换器重量细目 ............................................................................................. 190................................... 186 图 6.22:测量值与计算值的变流器损耗对比 .......................................... 187 图 6.23:变流器重量细目 .............................................................. 190................................... 186 图 6.22:测量值与计算值的变流器损耗对比 .......................................... 187 图 6.23:变流器重量细目 .............................................................. 190
表2显示了一个实体可能用于2021年度合规义务的最大偏移信用量的示例计算。在表2中,经过验证的年度排放为100,002 mtco 2 e。经过验证的排放量(0.04×100,002)为4,000.08 mtco 2 e。为了避免超过定量使用限制,碳水化合物将计算值的值降低到最接近的整数,导致4,000个偏移信用额,这是该合规义务允许的最大偏移信用次数。没有DEBS特殊类别名称的偏移信用量不能占定量使用限制限制的一半以上(四舍五入)。在此示例中,最多可以将没有DEBS指定的2,000个偏移信用额用于此合规义务。
两种耕作系统都使用 [ 表 1 ]。• 大豆种植后的残留物水平可能足以满足减少某些地点土壤侵蚀的要求,但冬季分解以及任何秋耕或春耕 - 甚至种植操作 - 都将轻易破坏大量残留物,因为它们很脆弱 [ 表 2;UWEX ]。因此,连续种植大豆的免耕系统可能是唯一符合保护性耕作系统所要求的 30% 地表残留物覆盖标准的系统 [ 表 1 ]。• 圆盘耙和凿犁等耕作机具将覆盖更多扁平、易碎的大豆残留物,而不是更坚固、更直立的玉米和高粱残留物。表 2 中的计算结果给出了当依次使用各种耕作机具时,从秋收到种植后玉米和大豆的残留物损失的估算示例。这些计算值小于使用单个农具一次计算的值 [ 表 3 ],并且毫无疑问,使用各种农具进行多次耕作可大大减少任何作物的残留物覆盖率。