摘要 - 图像分类是针对各个部门的深度学习领域(DL)领域的重要应用之一。可用于执行图像分类的不同类型的神经网络体系结构,每种神经网络体系结构都会产生不同的精度。数据集和所使用的功能是影响模型的结果。研究界至少针对特定领域的广义模型致力于广义模型。使用知识信息管理方法确定了对各种深度学习模型的当代调查,以进一步提供最佳的体系结构以及对广义深度学习模型,以将图像缩小到特定于部门的特定于部门。该研究系统地介绍了用于每个深度学习模型的不同类型的体系结构,其变体,层和参数。详细介绍了体系结构类型的特定应用程序和局限性。它可以帮助研究人员为特定部门选择适当的深度学习体系结构。关键字 - 图像分类,深度学习,神经网络
许多人脑的临床和研究都需要精确的 MRI 结构分割。虽然传统的基于图谱的方法可以应用于来自任何采集部位的体积,但最近的深度学习算法只有在对训练中使用的相同部位的数据(即内部数据)进行测试时才能确保高精度。外部数据(即来自看不见的部位的看不见的体积)的性能下降是由于部位间强度分布的变化,以及不同 MRI 扫描仪模型和采集参数导致的独特伪影。为了减轻这种部位依赖性(通常称为扫描仪效应),我们提出了 LOD-Brain,这是一个具有渐进细节层次(LOD)的 3D 卷积神经网络,能够分割来自任何部位的大脑数据。较粗的网络级别负责学习有助于识别大脑结构及其位置的稳健解剖先验,而较细的网络级别则细化模型以处理特定部位的强度分布和解剖变化。我们通过在前所未有的丰富数据集上训练模型来确保跨站点的稳健性,该数据集汇集了来自开放存储库的数据:来自大约 160 个采集站点的近 27,000 个 T1w 卷,规模为 1.5 - 3T,来自 8 至 90 岁的人群。大量测试表明,LOD-Brain 产生了最先进的结果,内部和外部站点之间的性能没有显著差异,并且对具有挑战性的解剖变异具有稳健性。它的可移植性为跨不同医疗机构、患者群体和成像技术制造商的大规模应用铺平了道路。代码、模型和演示可在项目网站上找到。
摘要:基于mRNA的疫苗技术已得到了显着开发和增强,特别是由mRNA疫苗授权以解决COVID-19-19-19大流行的授权。在纳米尺度开发了各种生物材料,并用作mRNA疫苗输送平台。但是,这些mRNA纳米植物如何影响免疫反应尚未得到彻底研究。因此,我们回顾了当前对各种mRNA疫苗平台的理解。我们讨论了这些平台可以调节宿主先天的免疫性的可能途径,并有助于自适应免疫的发展。我们阐明了它们在降低生物毒性和提高抗原递送效率方面的发展。超出了mRNA疫苗的内置辅助性,我们建议需要补充佐剂才能进行调节和精确控制先天免疫力,并随后进行适应性免疫反应。
认知地图是关于大脑如何有效组织记忆并从中检索上下文的一个概念。内嗅海马复合体与情景和关系记忆处理以及空间导航密切相关,被认为通过位置和网格细胞构建认知地图。为了利用认知地图的有希望的特性,我们使用后继表示建立了一个多模态神经网络,该网络能够模拟位置细胞动态和认知地图表示。在这里,我们使用由图像和词嵌入组成的多模态输入。网络学习新输入和训练数据库之间的相似性,从而成功学习认知地图的表示。随后,网络的预测可用于从一种模态推断到另一种模态,准确率超过 90%。因此,所提出的方法可以成为改进当前 AI 系统的基石,以便更好地理解环境和物体出现的不同模态。因此,特定模态与某些遭遇的关联可以在新情况下导致情境感知,当发生具有较少信息的类似遭遇时,可以从学习到的认知图中推断出更多信息。认知图,以大脑中的内嗅海马复合体为代表,组织和检索记忆中的情境,这表明像 ChatGPT 这样的大型语言模型 (LLM) 可以利用类似的架构来充当高级处理中心,类似于海马体在皮层层次结构中的运作方式。最后,通过利用多模态输入,LLM 可以潜在地弥合不同形式数据(如图像和文字)之间的差距,为情境感知和通过学习到的关联来扎根抽象概念铺平道路,解决人工智能中的基础问题。
使用人工智能来处理衍射图像的挑战是需要组装大型且精确设计的训练数据集的挑战。为了解决这个问题,开发了一个称为Resonet的代码库,用于合成这些数据的衍射数据和培训残留神经网络。在这里,共振的两个人均能力:(i)晶体分辨率的解释和(ii)重叠晶格的识别。通过同步加速器实验和X射线自由电子激光实验对衍射图像的汇编进行了测试。至关重要的是,这些模型很容易在图形处理单元上执行,因此可以显着超过常规算法。目前使用共振来为斯坦福同步辐射光源的宏观分子晶体学用户提供实时反馈,但其简单的基于Python的接口使其易于嵌入其他处理框架。这项工作强调了基于物理的模拟对训练深神网络的实用性,并为开发其他模型的开发奠定了基础,以增强衍射收集和分析。
在文本到视频生成[2,13,27,31,42]中。尽管取得了成就,但文本输入的有限可控性刺激了图像到视频(I2V)生成领域的增长趋势,旨在鉴于图像和文本描述[27,38,43],旨在产生视频序列。在I2V生成上的最新研究[35,38,43]试图通过将时间层纳入现有SD模型并在视频和图像数据集中训练这些较大的模型来利用预训练的SD模型的功能。尽管这些方法表现出了令人鼓舞的结果,但在大规模标记的数据集中,很大的缺点仍然很大程度上依赖广泛的培训[9,39]。这可以表现出来,从而限制了这些方法的可访问性和发展潜力。
研究身体性能的神经机制是运动神经科学领域的越来越多的研究重点。Sport is more and more benefiting from and contributing to a greater awareness of concepts such as neuroplasticity (i.e., the structural and functional adaptations in specific brain and spinal circuits), and neuromodulation techniques (i.e., the application of low-level intensity currents to induce polarity-specific changes in neuronal excitability).神经塑性在强度和调节的领域不广泛理解;然而,它从根本上影响了运动员在运动中的运动和表现。理解神经塑性的基本概念可以指导力量训练,这被定义为抗性运动,从而增加了力量能力。要执行多关节运动,大脑必须与合适的肌肉组坐标,以及时执行肌肉收缩。因此,与运动学习有关的力量训练需要在运动皮层中引发的复杂肌内和肌内配位。此外,力量训练会导致中枢神经系统(CNS)(尤其是在运动皮层中)中使用依赖性塑料随时间变化(称为长期增强,Cooke and Bliss,2006)(Hortobagyi等,2021)。广泛接受的是,力量训练需要在培训的早期阶段进行神经适应(Sale,1988; Hortobagyi等,2021)。这一假设的基础是研究表明,训练的初始阶段会导致力产生大量增强,而没有肌肉质量的改变(即结构变化)。特别是,在训练的第一周内,肌肉力量产生的运动单位适应发生(Häkkinen等,1985)。,直到最近,有关力量训练的文献尚未最终确定CNS最负责这些适应的部分。最近的一项灵长类动物研究表明,通过网状脊髓束强度训练引起的脊柱上的脊髓变化与肌肉性能的变化有关(Glover and Baker,2020)。最近的荟萃分析(Siddique等,2020; Hortobagyi等,2021;Gómez-Feria等,2023)强调了一种趋势,趋势趋于同时进行皮质脊髓兴奋性和肌肉力量,并在对肌层降低后的抑制作用后,肌肉力量降低了降低的降低。但是,重要的是要注意,这种趋势根据所选训练方式具有相当程度的异质性(Gómez-Feria等,2023)。迄今为止,鉴于对耐强度训练的神经影响的研究很少,尚不清楚产生大量和持久的神经变化所需的力量训练需要多少。
深度神经网络 (DNN) 特征与皮质反应之间的一致性目前为更高级的视觉区域提供了最准确的定量解释 [1、2、3、4]。与此同时,这些模型特征也被批评为无法解释的解释,将一个黑匣子(人脑)换成了另一个黑匣子(神经网络)。在本文中,我们训练网络直接从头开始预测大脑对来自大规模自然场景数据集的图像的反应 [5]。然后,我们使用“网络解剖” [6],这是一种可解释的人工智能技术,通过识别和定位图像中已训练网络的各个单元中最显著的特征来增强神经网络的可解释性,该技术已用于研究人脑的类别选择性 [7]。我们采用这种方法创建了一个假设中立模型,然后使用该模型探索类别选择性之外的特定视觉区域的调节特性,我们称之为“大脑解剖”。我们利用大脑解剖来研究一系列生态上重要的中间特性,包括深度、表面法线、曲率和物体关系,这些特性贯穿顶叶、外侧和腹侧视觉流以及场景选择区域的子区域。我们的研究结果揭示了大脑各区域对解释视觉场景的不同偏好,其中腹外侧区域偏爱较近和较弯曲的特征,内侧和顶叶区域选择更多样化和更平坦的 3D 元素,而顶叶区域则特别偏爱空间关系。场景选择区域表现出不同的偏好,因为后压部复合体偏爱远处和户外特征,而枕叶和海马旁回区域偏爱近处、垂直性,而在 OPA 的情况下,偏爱室内元素。这些发现表明,使用可解释的人工智能揭示整个视觉皮层的空间特征选择性具有潜力,有助于更深入、更细致地了解人类视觉皮层在观看自然场景时的功能特征。
陆军训练信息系统 (ATIS) 是产品经理 (PdM) ATIS 产品组合的一部分,它将为陆军训练和教育社区开发、集成、测试、交付、运营和维护企业能力。ATIS 将通过自动化培训管理、规划、调度和资源配置的行政负担来挽回领导者宝贵的时间资源,以便陆军领导者可以花时间执行和评估部队训练和战备情况。
生成模型的进步最近彻底改变了机器学习。与此同时,在神经科学中,长期以来一直认为生成模型是动物智能的基础。了解支持这些过程的生物学机制有望阐明生物学和人工智能之间的关系。在动物中,海马形成被认为可以学习和使用生成模型来支持其在空间和非空间记忆中的作用。在这里,我们介绍了海马形成的生物学上合理模型,该模型将我们应用于输入时间流的Helmholtz机器。我们模型的一个新成分是,快速的theta波段振荡(5-10 Hz)门是整个网络中信息流的方向,训练它类似于高频唤醒式睡算法。我们的模型可以准确地渗透高维感觉环境的潜在状态,并产生逼真的感觉预测。此外,它可以通过开发匹配以前的理论建议并在环境之间的环境传递此结构来学会通过开发环形连接结构来学习集成的路径。虽然许多模型具有一般性的生物学合理性,但我们的模型在一个生物学上合理的局部学习规则下捕获了各种海马认知功能。