金属有机框架(MOF)是最具吸引力的功能性多孔材料之一。但是,它们的加工性和处理性仍然是一个重大挑战,因为MOF通常由于其结晶性而以粉末形式出现。将MOF和纤维素底物结合到制造工程材料提供了理想的解决方案,可以扩大其作为功能材料的利用。MOF/纤维素复合材料进一步提供了MOF的显着机械性能,可调孔隙度和可访问的活性位点。在这篇综述中,我们总结了MOF/纤维素复合材料的当前最新制造路线,其特定重点是利用三维生物基于生物的纤维素支架的独特潜力。我们强调了它们作为气相和液相的吸附剂的利用,用于抗菌和蛋白质固定,化学传感器,电能量存储和其他新兴应用。此外,我们讨论了高级功能材料的MOF/纤维素复合材料领域的当前局限性和潜在的未来研究方向。
摘要 - 视觉机器人编程在学习幼儿教育的学习计算方面具有重要的好处,例如增强创造力,了解计算概念,介绍算法,提高解决问题的技能,引入技术,协作和沟通。在学龄前儿童中引入计算概念有助于为他们做好准备,以使他们的未来越来越依赖技术和计算。Visual Robot编程语言仍然很难教给学龄前儿童,因此有必要创建一种易于使用Block编程语言的儿童教学的编程语言。编程语言的设计始于选择适当的图标,创建编程语言流以及适合儿童学习机器人编程语言的块程序。创建视觉编程语言(VPL)设计,例如在块程序中使用图标,对象拖放规则,编程语言结构,合适的机器人和为儿童使用该结构,尤其是印尼编程语言的儿童的编程语言,以使学龄前儿童更容易以母语学习(使用Bahasa)。
腐蚀抑制剂在工业和学术界都受到广泛关注。1 - 3它们具有简单实施,快速效果和高成本效率的优势。有机腐蚀抑制剂主要通过物理或化学吸附形成蛋白质膜,而无机腐蚀抑制剂主要产生沉淀膜和氧化物膜。与抗腐蚀措施(例如耐腐蚀材料和涂料)相比,使用腐蚀抑制剂是消耗的,需要连续供应,这增加了与手动操作的成本和时间相关。4 - 7由于常规腐蚀抑制剂无法巧妙地响应变化的腐蚀环境,因此有必要开发一种可以针对特定区域并增强保护的智能响应抑制剂系统,从而提高了抑制剂的利用率和效率,该抑制剂的效率为8,9,该抑制剂在本文中被称为智能抑制剂。同时,近年来腐蚀抑制剂和涂料之间的协同作用也是研究的重点。使用腐蚀抑制作用来修复涂层的损坏区域并形成自我修复
复兴布朗菲尔德石油生产的动机扩大了在Jection Wells中应用聚合物凝胶处理的利益。实际上,在类似的储层类型中实施的先前补救措施的数量用于大小新作业。这样的基于类比的设计程序迫使基于全面的现场调查来评估每种储层类型的最频繁设计。这项调查通过审查其在653个注入井中的现场应用,为聚丙烯酰胺聚合物散装凝胶提供了一种新的治疗尺寸策略。新策略建议使用每个储层类型的平均凝胶量和最常见的凝胶量作为对新处理大小的初始估计。使用描述性统计数据和堆叠的条形图从65个现场项目(1985 - 2020)评估了五个凝胶体积的参数。使用四分位间范围方法的异常值检测方法识别出了不足或过度设计的项目。使用多个散点图来确定处理时间和储层温度如何影响治疗量。为了确定凝胶治疗失败的可能原因,没有成功的飞行员束缚了有效的项目。审查表明,散装凝胶处理已成功地处理了储层小偷,可移动的孔隙体积(MPV)30至1,036,000桶。治疗量在240至60,000桶之间;但是,凝胶量<1000和> 20,000桶在现场并不常见。凝胶处理的平均尺寸为10,300桶,每英尺穿孔300桶,占小偷区MPV的21%。通常,与其他储层类型相比,地层类型在砂岩和基质岩层中强烈影响治疗量和更大的处理。治疗量随凝胶处理的时间而降低,并随着形成温度的增加而升高。凝胶飞行员失败的最常见原因是凝胶处理的尺寸不足。对于非常规的储层,治疗尺寸范围在300至590桶之间,平均为414桶或每根脚15.8桶。结果还表明,随着凝胶体积的增加,所有储层类型的所有凝胶治疗反应都会改善,而不仅仅是石油产量,而不仅仅是基质形成。因此,还建议使用矩阵形成的未固结和破裂的储层“大型杀手”策略。不是使用一些类似处理的设计,而是为各种储层类型提供了凝胶处理量的深刻概念。它将显着促进凝胶处理尺寸,并减少为候选储层找到类似物所需的时间。
本文着重于具有太阳能产生和能源存储的分布式能源系统(DES)的集成管理和设计。DES仍然是自愿的简单,因为观察是要专注于设计方法而不是系统的复杂性。本文旨在弥合传统的DES设计策略,在代表时期以单个舞台方式制定的传统DES设计策略,以及通过系统操作过度简化的数十年来进行动态尺寸的扩展计划问题。,与基于单个同等年份的标准方法相比,当在系统寿命中控制衰老时,模型的价值在多大程度上增加。为了提出这些问题,首先通过耦合DES操作和尺寸来实现多个时间表模型。最佳资产容量是在系统寿命中以动态投资计划的形式计算的,该计划可以适应能源价格或技术成本的潜在变化。然后,将结果与公共仿真框架上的单阶段设计策略进行了比较。与典型的单阶段设计相比,实施的多时间规模计划显示出良好的表现,成本降低20%。最后,研究了能量率和系统自我效率的影响。获得的结果表明,与基线相比,对电力价格的储能量的显着投资乘以3次,或者在60%以上的强大自我效率限制。
严重的急性呼吸道综合征2(SARS-COV-2)通过病毒和细胞膜的融合感染细胞,该病毒和细胞膜是由其三聚体峰(S)蛋白介导的。S蛋白的S1亚基含有受体结合结构域(RBD),该结合结构域(RBD)负责识别人类血管紧张素转化酶2(ACE2)受体,而S2亚基通过在两个六螺旋束(6-hb)结构组装两个HeptAd repotions和Hr2 repions和Hr1中介导了膜融合过程。1–3结构数据表明,三个HR1螺旋形成了三聚螺旋线圈中心,在该中心周围以抗平行方式将三个HR2螺旋缠绕在该中心。4–6认为6-HB的形成提供了将病毒和细胞膜驱动到融合和感染的近端的能量。从HR1或HR2衍生的肽是通过阻断6-HB的组装来实现病毒进入的有效抑制剂,如抗人类免疫缺陷VIRS(HIV)药物Enfuvirtide(T20)所示,这是第一个临床认可的病毒融合抑制剂。7,8该策略已扩展到针对许多包围病毒的抑制剂,包括新兴的冠状病毒(COVS)SARS-COV,MERS-COV和SARS-COV-2。9,10自冠状病毒疾病19(Covid-19)以来,我们一直致力于表征SARS-COV-2 S蛋白介导的膜融合的机理,以及基于HR2的融合抑制性脂肽的设计。11–17如图1所示,IPB02及其衍生物是用HR2核序列设计的,而P40-LP包含N末端扩展的VDLG基序,IPB24包含膜近端外部区域(MPER)。这些抑制剂的特征是针对不同的SARS-COV-2变体以及其他人类COV的非常有效和广泛的活性。12,13,15–17然而,SARS-COV-2继续随着Larges突变的发展而演变,导致许多可以逃脱疫苗和抗病毒药的新变体,例如Omicron XBB.1.1.5和Eg.5.1;因此,泛氧化病毒抑制剂的开发仍然是很高的优先事项之一。
可耐醚电解质和高反应性锂金属阳极仍然限制了Li - S电池的商业应用。在LI - S细胞系统中,最常用的电解质溶剂是醚溶剂,例如二甲氧基乙烷(DME)和1,3-二氧烷(DOL),它们具有非常低的灰点(对于DME 6和1°C,DME 6和1°C的DOL 7)和高挥发性。这些醚电解质溶剂的这些特征确定使用Li - S细胞有很大的安全风险。对于反应性锂金属阳极,它可以很容易地与Li - S细胞中的基于醚的电解质和可溶性中间产物 - des des反应,并立即形成锂金属阳极表面上的固体电解质相(SEI)层。8不幸的是,SEI层倾向于不稳定和脆弱,这会导致严重的不可逆转能力降解。更平均,锂阳极的非均匀电化学溶解/沉积将导致锂树突的形成,这可以穿透分离器并引起严重的安全危害。为了解决上述问题,已经在更安全的电解质上为LI - S电池(例如固体电解质,离子液体,高浓度电解质,uorated溶剂和AME阻燃剂)进行了大量出色的工作。尽管这些作品取得了出色的改进,但它们也具有明显的缺陷,例如界面兼容性差和复杂的制备过程(固体电解质),9