有各种模型,涉及人类大脑中知识的生成,包括语义网络模型。尽管已广泛研究了该模型,甚至提出了计算模型,但是由于不同类型的知识的产生各种限制和不官方,它的应用仅限于语义知识,因为它是根据语义记忆和声明性知识形成的,并且在解释各种程序和条件知识方面具有许多限制。鉴于为知识产生提供合适的模型的重要性,尤其是在改善人类认知功能或构建智能机器的领域,改善知识生成中的现有模型或提供更全面的模型具有很大的重要性。在当前的研究中,基于大脑的自由能原理,研究人员提出了一个模型,用于产生三种类型的声明性,程序性和条件知识。在解释不同类型的知识的同时,该模型能够根据概率数学和动作感知过程(主动推论)计算并从刺激中生成概念。所提出的模型是无监督的学习,可以使用不同的刺激作为生成模型来更新自身,可以生成无监督接收的刺激的新概念。在此模型中,主动推理过程用于程序和条件知识的发生,并且感知过程用于生成声明性知识。
分配讲座主题第17年1月17日心理学历史无19学习与记忆的心理学第1章24大脑基础知识第2章学习和记忆的神经科学和记忆的神经科学和记忆的神经科学范围第2章第2章考试1涵盖1/17-1/26无feb 2 none feb 2学习重复事件第3 7章7大脑基于重复重复学习的大脑基于重复的学习,基于重复操作调节的大脑底物第5章28泛化和歧视学习第6章3月1日,概括的脑底物第6章6检查3涵盖2/21-3/1无8 8个情节和语义记忆,第7章20发言性记忆的大脑记忆第7 22个技能记忆第7 22个技能记忆:通过做的学习:进行8 27的大脑学习章节8 29章节审查第9章capl and Coption Coption and Coption 4 3/8-4/3无10个情感影响对学习的情感影响第10章12情感学习的大脑底物第10章17社会学习和记忆第11章社会学习的脑底物第11章24发展和老化第12章开发和衰老的大脑基质和年龄第12章期末考试:5月3日,9:00 AM涵盖4/10 - 4/10 - 4/26 - 4/26
顾:我认为智能不只是拥有尽可能多的知识,而是从知识中学习普遍的规则,并运用到新任务中去。在神经科学中,有一个很好的例子,就是爱德华·托尔曼在1948年提出的“认知地图”。这个概念最早是在观察老鼠在迷宫中漫游时的行为时提出的。在这种空间导航任务中,老鼠首先将一系列空间和时间事件作为自我中心坐标存储起来,形成“情景记忆”,然后以认知地图的形式进一步转化为更抽象的“语义记忆”。基于自我中心地图,老鼠和其他动物可以利用结构化知识在新环境中导航,或者在迷宫中某些路径被阻塞时规划新路线。现在,我们知道认知地图不仅是空间导航的地图,也是抽象导航的地图,例如通过社交或价值空间。在最近的一篇《细胞》文章中,科学家发现猴子使用相同的大脑区域(包括海马体)来穿越空间,无论是物理空间还是抽象空间。这些大脑区域负责抽象一般规律并形成可以转移以解决不同问题的真实知识。这就是人类和其他动物拥有元学习或学会学习的能力的方式,这实际上是智力的关键,特别是使我们能够掌握多任务处理的一般智力。
Eleonoracatricalà当前立场:自2020年5月18日以来,帕维亚(Iuss)帕维亚(Iuss)成员的副教授(M -PSI/02)是Iuss认知神经科学中心 - Iuss Pavia Icon的帕维亚成员。休假期:11/01/2019-11/06/2019(产假)4/07/2019-28/12/2019(疾病休假)工作经验:-2016-2020高级研究所(IUSS)PAVIA研究所(IUSS)。- 2014-2016帕维亚高级研究所(IUSS)博士后研究员:关于健康和神经退行性疾病的语言和语义记忆的神经心理学和神经影像学研究。- 2014年2014年IRCCS Carlo Besta神经学研究所的研究员:开发新的实验性神经心理学服务和临床和研究活动的协调。- 2008年威斯康星大学麦迪逊大学心理学系的访问研究员:语义记忆的计算模型。- 2007 - 2011年在圣拉菲尔·维塔·萨利塔大学(San Raffaele Vita Salute University)的认知神经科学实验室研究奖学金和简短合同,圣拉法尔医院(San Raffaele)医院神经心理学部实验室:FMRI和神经心理学研究在健康和神经变性疾病中的语义记忆。- 2007年IRCC神经心理学实验室的研究奖学金ISTITUTO Auxologico Italiano,Milan:神经心理学的研究活动。
肯特·科克伦 (KC) 在 30 岁时因摩托车事故导致颅内创伤,导致其出现严重的失忆症,此后近三十年来研究人员一直在对他进行研究。KC 在言语和非言语领域均患有严重的前行性遗忘症,同时伴有选择性逆行性遗忘症,无法记住受伤前经历的个人事件(情景记忆),而对个人和世界事实的记忆(语义记忆)以及内隐记忆则相对保留。这种保留和受损的记忆模式延伸到对大规模环境的空间记忆,以及对未来的想象和决策。62 岁时死后大脑检查结果包括中度弥漫性萎缩、左侧眶额挫伤、左侧大脑后动脉梗塞和左前额分水岭梗塞。值得注意的是,双侧海马均有严重的神经元丢失和神经胶质增生。左侧海马前部和后部受到严重影响,但 CA2、CA4 和齿状回 (DG) 局部未受损。左侧穹窿伴有退化。右侧海马前部几乎完全破坏,后部相对保存,主要是 CA4 和 DG。双侧海马旁回和左侧丘脑前部也出现神经元丢失和神经胶质增生。β-淀粉样蛋白、磷酸化 tau 或 TDP-43 免疫染色未发现共存的神经退行性现象。内侧颞叶结构受损程度与 KC 严重的顺行性和逆行性遗忘症相符,但意外发现 CA2/CA4 和 DG 保存完好。 KC 的案例表明,在广泛的脑损伤后,相对明显的功能分离仍然可能存在,结构受损的脑区不太可能对完整的认知功能至关重要。这样一来,本文提出的研究结果为 KC 对我们理解记忆的临床解剖关系做出了重要贡献。
人类的海马体对于记忆功能至关重要,海马体受损会导致至少无法形成新的情景记忆和语义记忆(Clark et al., 2019; Corkin, 2002; Maguire, Intraub, & Mullally, 2016)。此外,有研究表明,高血压病史与海马体功能连接减弱和前瞻性记忆受损有关(Feng, Rolls, Cheng, & Feng, 2020),因此海马系统在普通人群中的运作方式与神经心理学和临床实践相关。要了解海马体如何参与记忆及其障碍,我们需要了解它与其他大脑区域的联系,尤其是与大脑皮层的联系(Aggleton, 2012; Rolls, 2018, 2021a)。海马体的连接为该记忆系统的计算运作方式提供了重大限制。如果存在双重层次组织的、分离的连接集,用于通过外嗅皮质和外侧内嗅皮质将腹侧流“什么”信息传输到海马体;以及通过海马旁回和内侧内嗅皮质将背侧顶叶流区域传输到海马体(Burwell,2000;Burwell,Witter,& Amaral,1995;Doan,Lagartos-Donate,Nilssen,Ohara,& Witter,2019;Knierim,Neunuebel,& Deshmukh,2014;Suzuki & Amaral,1994;Van Hoesen,1982),那么海马体就可以看作是连接特定事件的“什么”和“哪里”流,以便我们可以将例如谁在场(“什么”)以及他们在哪里联系起来。这将使得往返海马体的层次化组织的通路在每个阶段主要用于将信息传递到海马体进行储存,并传回大脑皮层进行回忆,并在每个阶段向海马体向前汇聚,从海马体向后发散(Treves & Rolls, 1994 ; Kesner & Rolls, 2015 ; Rolls, 2018 , 2021a )。另一种可能性是,人类海马记忆系统的层次化组织较少,信息流的分离较少,这将使不同皮质区域能够专门用于不同类型的计算。关于海马系统连接的大部分证据来自动物研究,一些主要发现总结如下和其他地方(Huang, Rolls, Hsu, Feng, & Lin, 2021 )。然而,要理解人类的海马记忆系统,就必须了解人类之间的联系,尤其是因为人类的颞叶腹侧视觉流处理已经有了很大的发展,用于进行不变的物体识别,具有大量的早期视觉皮层区域,大量发达的顶叶背侧视觉流参与与中央凹视觉和眼球运动相关的空间处理,眶额皮质奖励/情绪系统非常发达,以及啮齿类动物中不存在的后扣带皮层(Rolls,2021a)。最近的一项研究(Huang,
要揭示人类大脑如何编码和约束词语,必须识别形态语义加工背后的复杂神经认知机制。形态加工涉及对给定词语的内部形态信息和结构的心理操作,整个过程总是与语义分析交织在一起(Chung, Tong, Liu, McBride-Chang, & Meng, 2010 ; Ip et al., 2017)。迄今为止,尽管形态学在字母语言处理中的作用已得到广泛探索(例如,Bölte、Jansma、Zilverstand和Zwitserlood,2009;Carrasco-Ortiz和Frenck-Mestre,2014;Leminen、Smolka、Dunabeitia和Pliatsikas,2019;Schremm、Nov en、Horne和Roll,2019),但尚不清楚中文形态学在阅读过程中如何表现。由于超过 70% 的中文词是由两个或三个构成字/词素复合而成的,因此书面中文通常被描述为形态音节(DeFrancis,1989),其中每个字对应一个音节/词素。因此,亚词汇层次的构成词素可能在介导词汇获取和整词加工中发挥重要作用。最近,越来越多的研究证明了汉语复合词阅读中词素效应和亚词汇加工的心理现实(例如,Huang, Lee, Huang, & Chou, 2011; Huang, Lee, Tsai, & Tzeng, 2011; Zhao, Wu, Li, & Guo, 2017 ; Gao, Wang, Zhao, & Yuan, 2021 )。然而,在汉语词汇阅读过程中,人类大脑如何编码形态约束的时空特征仍不清楚。有趣的是,有人将并列复合词(如“花草”、/faa1 cou2/、flower 和 grass、plant)嵌入视觉启动词汇决策任务中,研究了汉语形态结构加工的时间进程和时间特征(Chung et al.,2010)。事件相关电位(ERP)结果显示,纯形态结构效应仅在220 至300 毫秒的时间窗内检测到(额叶P250/P2效应),而经典的N400语义启动效应(表现在中央顶叶电极点)能够指示语义记忆网络的激活,这表明形态结构可能在早期复合词阅读过程中自动调节语义加工(Pylkköanen & Marantz,2003;Pylkköanen、Feintuch、Hopkins & Marantz,2004)。另一项研究也表明,具有相同形态结构的词对比具有不同结构的词对引起的 P2a 波幅更大(在额叶部位为 150 至 180 毫秒)(顾,余,马,2012)。这些发现表明,在汉语复合词阅读的早期阶段可能存在形态结构加工成分,并且独立于后期的词汇语义加工。然而,与早期加工理论(如 P250/P2、P2a)相反,最近的一系列研究表明,汉语形态加工在词汇后层面上暗示着有意识的过程(Allen、Badecker 和 Osterhout,2003;Newman、Ullman、Pancheva、Waligura 和 Neville,2007)。例如,研究发现,形态生产力较高的词(即从属结构)会引发明显更大的 P600