摘要 β-谷甾醇是植物中最常见的生物活性植物甾醇之一。它具有消炎、抗氧化、免疫抑制和抗关节炎的作用。炎症与严重疾病有关,这种疾病已导致全球许多人死亡。研究发现,用于治疗炎症的大多数药物都会抑制免疫系统的功能。β-谷甾醇乙酸酯和 β-谷甾醇三醇由 β-谷甾醇合成,并对 2,2-二苯基-1-苦基肼 (DPPH)、2,2-偶氮双-3-乙基苯并噻唑啉-6-磺酸 (ABTS) 和过氧化氢进行抗氧化测试。此外,还用脂氧合酶、蛋白酶、白蛋白变性抑制和膜稳定化来测定炎症抑制。 β-谷甾醇及其合成产物的 DPPH 和 ABTS 性能结果相当,但 β-谷甾醇乙酸酯的过氧化氢清除活性高于 β-谷甾醇和 β-谷甾醇三醇。三种样品在脂氧合酶抑制方面无显著差异(P<0.05),但 β-谷甾醇三醇在 10 – 100 µg/mL 时具有更高的蛋白酶抑制率。此外,在 150 µg/mL 的测量中,β-谷甾醇乙酸酯在白蛋白变性抑制剂和膜稳定剂方面表现出明显更好的性能。β-谷甾醇合成产物的抗氧化和抗炎活性优于 β-谷甾醇。衍生物 β-谷甾醇对炎症和其他疾病具有增强的治疗效果。关键词:抗氧化剂,衍生物,炎症β-谷甾醇,合成 引言 当自由基与分子氧相互作用时,会产生活性氧,从而导致炎症。类风湿性关节炎、高血压、癌症、心脏病和炎症性肠病等许多疾病都与炎症有关,而炎症又会导致
摘要:羟基磷灰石纳米粒子 (HApNPs) 是一种尺寸小于 100 纳米的无机材料。它们的主要特性是生物相容性,因为它们的化学成分与人体骨骼相似,因此适合在生理环境中使用。这些特性使它们成为一种有前途的甾醇衍生药物输送替代品,与传统的药物输送方法相比,具有更好的靶向性和控制释放性。在本研究中,使用化学沉淀法合成了负载胆固醇和 β-谷甾醇的 HApNPs。通过傅里叶变换红外 (FTIR) 光谱对纳米粒子 (NPs) 进行表征,以识别功能组并确认 HApNPs 上存在甾醇。使用透射电子显微镜 (TEM) 和动态光散射 (DLS) 分析了 NPs 的形态和尺寸。通过热重分析确定甾醇衍生物的负载量,并评估了纳米粒子在酸性介质中的稳定性。结果表明,成功合成了负载胆固醇和β-谷甾醇的HApNP,其呈球形,直径小于100纳米。数据证实胆固醇和β-谷甾醇已掺入HApNP表面,并且随后释放。此外,纳米生物界面中甾醇衍生物的存在增强了纳米粒子对酸性条件的抵抗力,表明它们有可能作为药物纳米载体在肠道中靶向释放,而不会在通过胃的过程中发生改变。关键词:羟基磷灰石纳米粒子、胆固醇、β-谷甾醇、界面、酸性介质。
背景肺癌是全球癌症死亡的主要原因[1]。非小细胞肺癌(NSCLC)约占肺癌的85%[2]。目前,NSCLC的主要治疗方法是化疗、手术、放疗和靶向治疗[3],但五年生存率低至18%,且可能导致严重的副作用和耐药性[4,5]。因此,迫切需要开发治疗非小细胞肺癌的有效药物。地球总物种的25%由海洋物种组成。这些化合物中的许多具有特殊的生物活性和化学结构,可作为许多疾病的潜在药物[6,7]。这些海洋植物提取物大多已被证实具有抗癌[8,9]、抗炎[10,11]、抗病毒[12,13]等作用。从海洋植物提取物中提取的海洋药物受到越来越多的关注。褐藻是海洋中的一种大型藻类。岩藻固醇是褐藻乙醇提取物中的一种藻类植物固醇,已被证实具有多种生物活性,包括抗氧化[14-16]、抗炎[17-19]、抗癌[20]、抗菌[21]、抗抑郁[22]等。先前的研究报道了岩藻固醇在抗宫颈癌[20]、抗白血病[23]、抗结直肠癌[24]等方面的作用,但关于岩藻固醇治疗非小细胞肺癌的机制研究很少,其潜在的治疗靶点和相关途径尚未详细报道。
Ⅰ.实验方法与前文报道相同,采用5×40cm东洋纸131号进行纸离子电泳。在新配制的M/20-磷酸盐缓冲液,pH8.0中,250V电泳2.5小时后,将荧光部分和非荧光部分切成5cm以内的碎片,用10cc无热原生理盐水洗脱,按照日本药典描述的方法进行热原试验。用苯胺氢邻苯二甲酸酯和间苯二酚盐酸盐检测糖在所有样品中均为阴性。酿酒酵母(S 7)、枯草芽孢杆菌(Bs 24)、普通变形杆菌(Eb 51)、八叠球菌将Goodsir (Mi 55)、Micrococcus subflavus Cohn (Mi 3)、Cladosporium herbarum Link (Dm 11)、Fusarium roseum (Fu 12) 和Penicillium chrysogenum (P 73) 分别在合成培养基中培养 10 天,细菌为 pH 7.5 和 37°C,酵母和霉菌为 pH 5.5 和 24°C,然后在 15 磅下灭菌 15 分钟,并通过滤纸过滤。将滤液以 5 cc/kg 的剂量喂给兔子。
外源性给药时,包括但不限于:• 1-雄烯二醇(5ɑ-雄甾-1-烯-3β,17β-二醇)• 1-雄烯二酮(5ɑ-雄甾-1-烯-3,17-二酮)• 1-雄酮(3ɑ-羟基-5a-雄甾-1-烯-17-酮)• 1-表雄酮(3β-羟基-5ɑ-雄甾-1-烯-17-酮)• 1-睾酮(17β-羟基-5ɑ-雄甾-1-烯-3-酮)• 4-雄烯二醇(雄甾-4-烯-3β,17β-二醇)• 4-羟基睾酮(4,17β-二羟基雄甾-4-烯-3-酮)• 5-雄烯二酮(雄甾-5-烯-3,17-二酮)• 7ɑ-羟基-DHEA • 7ß-羟基-DHEA • 7-酮-DHEA • 11ß-甲基-19-去甲睾酮 • 17ɑ-甲基表硫甾烷醇(表雄甾烷) • 19-去甲雄烯二醇(雌-4-烯-3,17-二醇) • 19-去甲雄烯二酮(雌-4-烯-3,17-二酮) • 雄甾-4-烯-3,11,17- 三酮(11-酮雄烯二酮,肾上腺酮) • 雄甾烷醇酮(5ɑ-二氢睾酮,17ß-羟基-5ɑ-雄甾烷-3-酮) • 雄烯二醇(雄甾-5-烯-3ß,17ß-二醇) •雄烯二酮(雄甾-4-烯-3,17-二酮)• 勃拉雄酮 • 勃地酮 • 勃地酮(雄甾-1,4-二烯-3,17-二酮)• 卡鲁司酮 • 氯司替勃 • 达那唑([1,2]恶唑并[4',5':2,3]孕-4-烯-20-炔-17ɑ-醇)• 脱氢氯甲基睾酮(4-氯-17β-羟基-17ɑ-甲基雄甾-1,4-二烯-3-酮)• 脱氧甲基睾酮(17ɑ-甲基-5ɑ-雄甾-2-烯-
2022 年 5 月 26 日 — 关于国防部情报总部采用开放柜台方式的报价请求...墨粉盒和其他 11 种物品标准。请参阅随附的估价数量。请参阅随附的估价
我们使用 TIMER 数据库 (https://cistrome.shinyapps.io/timer/) 进行了免疫浸润分析,该数据库是一个友好的综合工具集,用于对不同类型的癌症进行免疫浸润的综合分析。TIMER 数据库中涉及六种免疫细胞的分析,包括 CD4 + T 细胞、CD8 + T 细胞、B 细胞、中性粒细胞、巨噬细胞和树突状细胞。此外,我们在调整肿瘤纯度后进行了基因 GRB2 与 EGFR 的关联分析。
摘要 本研究旨在利用网络药理学和分子对接方法探讨瓜蒌-当归-乳香-没药(TAFM)治疗乳腺癌的关键活性成分、潜在靶点及其分子机制。利用中药系统药理学数据库与分析平台(TCMSP)数据库获取TAFM的化学成分和相关靶点;利用GeneCards、OMIM、Drugbank和治疗靶点数据库(TTD)等数据库识别乳腺癌相关靶点;利用Cytoscape 3.9.1软件和STRING(Search Tool for the Retrieval of Interaction Gene/Proteins)数据库可视化药物成分-靶点-疾病和蛋白质相互作用网络,筛选核心成分和关键靶点。使用DAVID(Database for Annotation, Visualization and Integrated Discovery)数据库进行基因本体论(GO)和京都基因和基因组百科全书(KEGG)分析,使用AutoDock和PyMOL软件进行分子对接。发现TAFM在治疗乳腺癌中的关键活性成分包括β-谷甾醇、豆固醇、鞣花酸、天竺葵素和矮牵牛素,共鉴定出ESR1、VEGFA、PTGS2、HSP90AA1、CASP3等38个关键靶点和枢纽基因。分子对接结果证实豆固醇和胱天蛋白酶3(CASP3)是相关最密切的靶点。GO富集分析显示,参与的生物学过程主要包括药物反应、凋亡过程的正向调控和基因表达双向调控等。KEGG通路分析揭示了与癌症、炎症及感染相关疾病相关的通路的参与。研究结果提供了支持性证据,表明β-谷甾醇、豆固醇、鞣花酸、天竺葵素和矮牵牛素代表TAFM的关键生物活性成分,通过调节雌激素受体α(ESR1)、血管内皮生长因子A(VEGFA)、前列腺素-内过氧化物合酶2(PTGS2)、热休克蛋白90α(HSP90AA1)和CASP3在治疗乳腺癌中表现出抗乳腺癌活性。