摘要:世界上每九人中就有一人面临饥饿,每八人中就有一人患有肥胖症,所有人都面临着气候变化的威胁。水稻是世界上大多数人口的重要谷物作物和主食,但水稻生产面临着气候变化、全球人口增长以及全球饥饿和肥胖同时流行的挑战。这些问题至少可以部分通过转基因水稻得到解决。基因工程在过去一个世纪里得到了很大的发展。转基因水稻已被 ISAAA 的转基因批准数据库批准为可供人类安全食用。开发这种水稻的目的是提高稻米的产量、营养价值和食品安全性。这篇评论文章总结了转基因水稻的研究数据及其在改善营养不良双重负担方面的潜在作用,主要通过提高营养质量以及谷粒大小和产量。它还回顾了转基因水稻中产生的某些生物活性成分的潜在健康益处。此外,本文还讨论了应对这些挑战的潜在解决方案,包括使用转基因作物和鉴定与谷粒重量和营养品质有关的数量性状基因座。具体而言,已鉴定出一种位于 6 号染色体上的数量性状基因座,该基因座通过 Kasa 等位基因扩增,导致谷粒重量和棕色谷粒大幅增加。在水稻中,过量表达一种特定基因 Oryza sativa 质膜 H+-ATPase1 可改善根部对铵的吸收和同化,并增强叶片在光照下的气孔开放和光合作用速率。克隆研究也使鉴定与谷粒重量和营养品质有关的几个潜在数量性状基因座成为可能。最后,本文讨论了气候变化日益严重的威胁,如甲烷-一氧化二氮排放和全球变暖,以及如何通过修改水管理技术,利用转基因水稻显著改善这些威胁。总之,这篇综合评论对于谷物生物活性成分领域和试图通过基因工程生产高质量功能性谷物食品的食品工业具有特别重要的意义。
结果与讨论:ECT 下 N 2 O–N 排放量比环境排放量增加。使用印楝油包衣尿素 (NOCU) 可使 N 2 O–N 排放量减少 10.3%,而与 ECT 下的颗粒尿素处理相比,Limus 包衣尿素可使 N 2 O–N 排放量减少 14%。与 AMB 相比,ECT 处理下小麦土壤的 NH 3 –N 排放量也有所增加。与 ECT 条件下颗粒尿素的 NH 3 –N 排放量相比,通过 Limus 施用 N 可使小麦的 NH 3 –N 排放量减少 35.7–36.8%。温度升高使谷粒重量减少 7.6%。ECT 下,使用颗粒尿素的谷粒氮含量减少 10.9%。与 ECT 相互作用下的尿素相比,NOCU 和 Limus 的施用分别使谷粒氮增加 6% 和 9%。硝化抑制剂和脲酶抑制剂的应用可能会减少未来气候条件下的活性氮损失并提高氮的利用效率。
细胞分裂素 (CK) 是调节植物生长、发育和应激反应的多面激素。细胞分裂素与改善穗结构和谷粒产量有关,但被细胞分裂素氧化酶 (CKX) 灭活。在这项研究中,我们使用 CRISPR/Cas9 基因编辑在籼稻中开发了一种细胞分裂素氧化酶 2 (Osckx2) 缺陷突变体,并评估了其在缺水和盐度条件下的功能。OsCKX2 功能的丧失通过提高穗组织中的细胞分裂素含量增加了谷粒数量、二次穗分枝和总谷粒产量。在干旱条件下,Osckx2 突变体保存了更多的水并表现出更好的节水特性。通过减少蒸腾作用,Osckx2 突变体对未设置的脱水胁迫表现出比野生型更好的存活反应。此外,Osckx2 通过增强的抗氧化保护系统保持叶绿体和膜的完整性,并在干旱条件下表现出显著改善的光合功能。 OsCKX2 功能对穗粒数和耐旱性有负面影响,而对盐度没有明显影响。这一发现表明,有益的 Osckx2 等位基因可用于育种,以开发具有气候适应能力的高产品种,从而保障未来的粮食安全。
摘要 四十年来,植物转化与再生技术不断发展。在水稻(Oryza sativa L.)中,农杆菌介导的转化方法利用成熟种子和未成熟胚在粳稻和一些籼稻品种中具有较高的转化效率。然而,这些方法在2010年以来华南地区开发的最新籼稻品种中转化效率较低。在本文中,我们通过基于CRISPR/Cas的基因组编辑和传统的过表达转化探索了优质高产籼稻品种南桂占(NGZ)的植物培养再生。我们以成熟种子和基因谷粒大小和数量1(GSN1)为例,比较了该品种与其他四个广泛使用的籼稻品种和一个粳稻品种的转化效率。我们观察到不同品种中过表达系的谷粒大小普遍较小,而基因编辑系的谷粒大小较大。 NGZ 表型使其成为研究基因功能的极佳模型。我们还研究了愈伤组织中单核苷酸多态性 (SNP) 的分布和再生相关基因的表达水平差异,可能揭示了 NGZ 在农杆菌介导转化中的优势来源。这些结果为 NGZ 在与谷物改良相关的基因编辑和过表达转化中的高级应用提供了启示,为“水稻育种 4.0 时代”做出了贡献。
GO注释(GO:0043231;GO:0044444)。非同义突变的ORF33基因在SwissProt数据库中被注释为与extensin相关。此外,该基因还被发现与烟草中的伸肌蛋白相关。研究表明,伸肌蛋白是植物细胞壁中重要的结构蛋白,在细胞壁强化中发挥作用。研究还表明,伸肌蛋白的表达与细胞扩张程度呈负相关,增加伸肌蛋白的表达可能促进其表达的组织或器官局部区域细胞密度的增加(Roberts等,2006)。ORF25编码一种参与碳水化合物运输和代谢的蛋白质,根据其功能学,被认为是一种类formin蛋白。
安得拉邦贡土尔阿查里亚 NG 兰加农业大学 Maruteru 区域农业研究站 (RARS) 开发了一种超级水稻品种 Swarna。Swarna 是一种采用谱系育种法开发的籼稻品种。该品种源自 Vasista 和 Mahsuri 的杂交,全球种植面积近 500 万公顷(Merugumala 等人,2019 年)。该植物为半矮生,直立株型,穗型发达,株高 90-110 厘米,每平方米 250-260 个穗,叶子深绿色,成熟期为 145-150 天。该品种无芒,尖穗呈黄色,容重为 21.5 克。籽粒长 5 毫米,宽 2.46 毫米。 Swarna 的白色谷粒的脱壳、碾磨和整精米回收率分别为 78%、68% 和 65%。该品种的碱扩散值为 4,直链淀粉含量为 24.5%。该品种的一个重要表型标记是壳,颜色为金黄色。谷粒偶尔出现白垩质。该品种的平均产量为 5.5 吨/公顷。该品种抗细菌性叶枯病 (BLB)。然而,它具有中等抗倒伏性、中等早期幼苗活力、中等根系结构和高氮磷利用效率。该品种的谷粒短而粗,直链淀粉含量中等。由于该品种在低投入管理下具有高产量,农民广泛采用该品种。Swarna 水稻品种通常在雨养和灌溉条件下种植。该品种在不同环境下表现出更高的缓冲能力(Mohapatra 等人,2021 年)。
有时,这种塑造过程是经过深思熟虑的,这在我们赖以生存的物种中尤为明显。人类成为农民的 10,000 年左右时间里,我们驯化了农作物,这在农作物中体现得最为明显。在农业革命之前,人类可能已经收集并食用了各种植物的种子。但随着我们过渡到久坐不动的生活方式,我们无意中选择了我们驯化作物的特定特性。例如,如果我们观察小麦的祖先亲属,我们可以看到在农业起源后的时期内,谷物大小迅速增加。这样的过程很容易解释。人类很可能尽可能地从野外收集更大的种子,因此,当这些种子被有意或无意地散播到村庄时,在这些定居点周围生长的小麦更有可能携带导致谷粒变大的遗传变异,从而推动这些早期驯化谱系中谷粒越来越大的进化。
玉米:美国人熟知并喜爱的作物……或者至少我们是这么认为的。现代玉米看起来与其原始形态——一种名为大刍草的野草——如此不同,你很难认识到这两种植物有关联。经过数千年的定向进化,大刍草的小穗和难以消化的谷粒进化成了玉蜀黍的大穗,每个穗上有多达 500 颗多汁的谷粒(图 1)。1 玉米只是人类主导植物进化的一个例子;自文明开始以来,我们就一直在驯化和栽培农作物品种。虽然用于选择性育种植物的技术随着时间的推移而变得越来越先进,但基本原理仍然是一样的——利用物种中现有的变异来增加我们认为“理想”性状的流行率,比如玉米的穗更大。从历史上看,这是通过连续的育种实现的;今天,借助强大的基因组编辑工具,我们能够用更少的时间和精力获得相同(甚至更显著)的结果。
大豆是许多国家的主要作物,因其营养特性而被广泛用于从人类食品到动物产业。从经济角度来看,谷物链将大量资金转移到生产国的经济中。然而,与世界各地的其他农产品一样,大豆的最终产量可能会受到干旱等非生物环境压力的严重影响。由于豆荚和谷粒中的花朵可以最大限度地减少缺水造成的损害,研究人员一直致力于了解与开花过程相关的基因及其相互作用。本文介绍了一篇专门介绍大豆开花过程及其基因网络的综述,描述了基因相互作用以及基因如何在这一复杂机制中发挥作用,该机制也受日光和昼夜节律等环境触发因素的支配。目的是收集有关大豆开花过程的信息和见解,旨在提供有用的知识,以帮助开发耐旱大豆品系,最大限度地减少因开花延迟或提前而造成的损失,从而抑制财务和生产力损失。
摘要:丙酮酸激酶(PK)是糖酵解三大限速酶之一,在能量代谢中起着至关重要的作用。本研究从水稻基因组中鉴定了10个PK基因。最初,这些基因被分为两类:细胞质丙酮酸激酶(PKc)和质体丙酮酸激酶(PKp)。随后,表达分析发现OsPK1,OsPK3,OsPK4,OsPK6和OsPK9在籽粒中高表达,并且PK可以形成杂聚物。此外,研究还发现脱落酸(ABA)显著调控水稻中PK基因(OsPK1,OsPK4,OsPK9和OsPK10)的表达。有趣的是,所有这些基因都参与了水稻籽粒品质和产量的调控。例如,破坏 OsPK3 、OsPK5 、OsPK7 、OsPK8 和 OsPK10 以及破坏 OsPK4 、OsPK5 、OsPK6 和 OsPK10 分别降低了千粒重和结实率。此外,通过 CRISPR/Cas9 系统破坏 OsPK4 、OsPK6 、OsPK8 和 OsPK10 后,与野生型相比,总淀粉含量增加,蛋白质含量降低。同样,操作 OsPK4 、OsPK8 和 OsPK10 基因会增加直链淀粉含量。同时,除 ospk6 外,所有 CRISPR 突变体和 RNAi 系的谷粒与野生型相比,垩白率均显著增加。总体而言,这项研究描述了PK基因家族所有基因的功能,并展示了它们在改善水稻产量和品质性状方面的尚未开发的潜力。