a 华盛顿州立大学生物系统工程系,邮政信箱 646120,华盛顿州普尔曼 99164,美国 b 华盛顿州立大学生物系统工程系精准与自动化农业系统中心,华盛顿州普罗瑟 24106 North Bunn Road,华盛顿州 99350,美国 c 俄勒冈州立大学作物与土壤科学系赫米斯顿农业研究与推广中心,俄勒冈州赫米斯顿 2121 S. 1st Street,俄勒冈州 97838,美国 d 美国农业部农业研究服务处谷物豆科植物遗传与生理研究组,邮政信箱 646434,华盛顿州普尔曼 99164,美国 e 美国农业部农业研究服务处蔬菜与饲料作物生产研究组,华盛顿州普罗瑟 24106 North Bunn Road,华盛顿州 99350,美国 f 华盛顿州立大学作物与土壤科学系, PO Box 646420, Pullman, WA 99164, USA g Department of Horticulture, Washington State University, PO Box 646414, Pullman, WA 99164, USA
• 仅在已建立的草地上使用,且草地已超过 12 个月大。• 为获得最佳效果,请将其应用于最佳生长期的健康、活跃生长的杂草。• 杂草必须没有病虫害;没有遭受霜冻、干旱、涝渍或营养缺乏。• ProGrass 是一种主要作用于叶面的除草剂,因此施用时不存在的杂草将无法得到控制。• 如果预计会出现霜冻或叶子潮湿,请勿喷洒,因为可能会发生径流。• 如果作物受到压力或施用后出现不利条件,草可能会略微变黄或短暂生长受到抑制,但会迅速消失,不会对草的产量和质量产生负面影响。• ProGrass 对三叶草和其他豆科植物不安全。• 不要将 ProGrass 用于草籽作物。• 使用硬水施用时,请考虑加入水质调节剂。• 如果放牧草中有蓟,请考虑使用 Forefront ® T。如果割下的草中有蓟,则 MCPA 在物理上是兼容的。使用风险自负 • 使用 ProGrass 后仅 7 天即可修剪草坪,非常适合:
摘要:植物基因组的精确编辑一直是功能基因组研究和作物育种的迫切需要。Prime 编辑是一种新开发的基于 CRISPR-Cas9 的精确编辑技术,它使用工程逆转录酶 (RT)、催化受损的 Cas9 内切酶 (nCas9) 和 Prime 编辑向导 RNA (pegRNA)。此外,Prime 编辑比碱基编辑具有更广泛的编辑类型,可以产生几乎所有类型的编辑。虽然 Prime 编辑最早是在人类细胞中建立的,但它最近才被应用于植物。作为一种相对较新的技术,需要进行优化以提高不同作物的编辑效率。在本研究中,我们成功地编辑了水稻、花生、鹰嘴豆和豇豆原生质体中的突变体 GFP。在水稻中,双 pegRNA 的编辑效率比单 pegRNA 载体高出 16 倍。用双 pegRNA 载体转化花生、鹰嘴豆和豇豆后,也获得了编辑突变的 GFP 原生质体,尽管编辑效率比水稻低得多,范围从 0.2% 到 0.5%。这些初步结果有望加快在豆科植物育种计划中应用主要编辑,以加速作物改良。
决策者越来越多地考虑现代生物技术的希望,包括转基因生物(GMO),以帮助解决健康,农业和其他领域的发展问题(Zambrano等,2022年)。然而,辩论一直围绕健康和环境影响(美国国家科学院,2016年;拉曼,2017年; Smyth等,2021)。GMO的调节在全球范围内有所不同,一些国家实施了直接禁令或实施严格的控制(Sarkar等,2021; Yali,2022)。最近的一项研究研究了尼日利亚抗虫(PBR)cow的尼日利亚政策环境,该环境已经过基因设计以抵抗豆科植物豆荚骨(Maruca vitrata)[Mockshell等人,(未发表)]。豆科豆荚bor虫显着降低了牛港的产量和质量,报告的损失高达80%(Andam等,2024; Mockshell等,2024)。本政策说明总结了本文的发现,提供了见解,以指导围绕尼日利亚和撒哈拉以南非洲其他国家(SSA)采用生物技术食品作物的政策制定。主要的研究问题是:PBR Cow -pea是否有促成政策环境,哪些因素造成了?尼日利亚的吊舱抗药性(PBR)cow豆品种的简短背景
CFA 类别适用类别 1:提高产量和可负担的耐逆饲料和草料的可及性,特别是耐盐种子、豆科植物、饲料树和替代饲料解决方案,包括可负担的优质青贮饲料、干草和全混合日粮 (TMR)。类别 2:为畜牧业增加价格合理、优质的即食饲料、创新且具有成本效益的饲料成分和微量营养素(块状、补充剂)的供应。 类别 3:增加价格合理、及时、优质的适应气候的动物保健药物、疫苗、驱虫药和益生元的供应和可及性,以及社区主导的动物保健和疾病预防和监测系统以及质量咨询服务模式。 类别 4:增加有效的人工授精 (AI)、胚胎移植技术和服务的供应和可及性,用于牛和山羊。 类别 5:通过联系正规的机构买家(如在线电子商务平台、F-Commerce、国家和地区零售连锁店、酒店和餐馆以及冷链物流服务提供商)从 MSME 加工商处采购安全的牛奶/肉类产品,发展和加强正规的加工牛奶和肉类市场以及各种牛奶和肉类产品的适销性。 类别 6:通过现有金融产品、开发新的金融产品和服务以及通过包容性客户服务扩大融资渠道金融机构为畜牧业价值链参与者提供参与/引导
洋葱(Allium cepa L.)是一种园艺物种,其灯泡和空中部位被消耗,后者为绿洋葱。洋葱种植受疾病的影响,对水胁迫极为敏感,这大大降低了其产量。这项研究的目的是确定应用微生物财团,由生物肥料,生物刺激剂和生物防治剂组成的微生物财团对catamarca省(阿根廷)的洋葱培养的影响。由生物学真菌trichoderma spp的天然菌株组成的生物输入。和细菌菌株巴西,苏云金芽孢杆菌,根瘤菌豆科植物和Bradyrhizobium sp。被使用。这项研究是在卡帕亚氏菌科罗尼亚·德尔瓦勒(Colonia del Valle)的一个地块中进行的。实施了两种治疗方法:一种接种微生物财团,另一种是用水作为对照。进行了两个叶面应用。评估洋葱作物性能认为总产量,平均鳞茎重量,鳞茎大小,收获指数,生物质产量和植物数。结果表明,微生物联盟的应用增加了洋葱植物的产量,生长和发展。确定所选天然微生物的应用对植物具有生长促进作用,从而提高了洋葱作物的生长和生产力。
外语 英语,C2 精通 证书、课程和培训 职业培训,棉花改良的 DNA 分子标记技术,德克萨斯理工大学,德克萨斯州,美国,2009 职业培训,豆科植物改良的 DNA 分子标记技术,西澳大利亚大学,珀斯,澳大利亚,2008 职业培训,作物改良的 DNA 分子标记技术,作物改良的 DNA 分子标记技术,国际干旱地区农业研究中心,2008 职业培训,农业基因操作和生物信息学入门,大阪国立大学,日本,2003 职业培训,双单倍体大麦生产,Estacion Experimental De Aula Dei,萨拉戈萨,西班牙,2002 职业课程,Bitki Biyogüvenlik Araştırmaları,Tübitak,2002 学术头衔/任务 教授,埃斯基谢希尔奥斯曼加齐大学,Ziraat Fakültesi,塔林Biyoteknoloji Bölümü,2024 - 继续 副教授,埃斯基谢希尔·奥斯曼加齐大学,Ziraat Fakültesi,Tarımsal Biyoteknoloji Bölümü,2021 - 2024 副教授,锡诺普大学,文理学院,生物学系,2018 - 2021 助理教授,锡诺普大学,文学院科学, 生物学系, 2011 - 2018
起伏平原生态区 – 这是一个起伏平缓的地区,包含牧场,溪流和河流从西向东流淌,流向东部和东南部的跨林区和草原区。起伏平原生态区南部与爱德华兹高原生态区接壤,西部与高平原生态区接壤。土壤从细沙到粘土和粘壤土不等。本地草类包括小须芒草、蓝格拉玛草、侧穗格拉玛草、印第安草和沙须芒草。由于历史上的牲畜放牧习惯和景观中缺乏自然火灾,该地区的许多牧场已被一年生和多年生草本植物、豆科植物和木本植物入侵。主要木本植物包括红莓桧、丝兰、牧豆树、莲藕、朴树、大叶木、仙人掌、臭鼬灌木、麻黄、李子、西部无患子、小叶漆树、小栎、塔萨希罗、阿加里托、猫爪相思树、酸橙刺柏、沙鼠尾草等。牧豆树草原占据了这一生态区域的大片地区。大溪沿岸的洼地里有美国榆树、柳树、山核桃和三角叶杨。石灰岩山脊和陡峭的地形提供了更大的木本植物多样性,并为各种野生动物提供了栖息地。(德克萨斯州公园和野生动物部)
抽象的Anethum graveolens L.(Dill)是具有很多治疗价值的必不可少的治疗草药。这是一年一度的家庭apiaceae,具有独特的气味。Anethum graveolens L.传统上用作抗氧化剂,抗癌,抗血脂,抗真菌,心脏保护性。Anethum graveolens L.叶子用于降低胆固醇血症和癌症的风险。目前的研究涉及通过使用标准方法的物理化学,植物化学筛选,并估算各种提取物中的总酚类和类黄酮含量,例如水,丙酮,乙醇,甲醇,甲醇氢醇和二氯甲烷和二氯甲烷,以及使用分析指定方法的叶子叶子的豆科植物。在水溶液,丙酮,乙醇,甲醇,氢醇和二氯甲烷提取物中,观察到了单宁,皂苷,糖苷,糖苷,类黄酮,碱类固醇,固醇固醇,氨基酸,氨基酸,蛋白质,蛋白质,碳水化合物。估计的总酚含量为11.21至23.31 mg Gallic Acid每克提取物等效含量。类黄酮含量为4.38至47.81 mg槲皮素每克提取物等效。在丙酮中,亚硫素墓穴的水醇和二氯甲烷提取物。叶叶总酚类和类黄酮成分非常显着(p <0.0001)。溶剂给出了一个植物化学成分的性质的想法。这些成分与生物活性化合物有关,因为这对于Anethum Graveolens L.
摘要根际是植物根直接影响的土壤区域。根际中的微生物群落包括真菌,原生和细菌:所有在植物健康中都起着作用。有益的细菌中西氏细菌在氮含有的豆科植物上感染了根毛。感染会导致根结节的形成,其中Meliloti将大气氮转化为氨(一种可生物利用形式)。在土壤中,经常在生物膜中发现梅洛蒂(S. meliloti),并沿着根部缓慢行进,沿着未感染的根尖生长的根尖端发出根毛。土壤原生生物是根际系统的重要组成部分,能够沿着根和水膜迅速行进,后者捕食土壤细菌,并且已知未消除的吞噬体已知。我们表明,土壤原生物colpoda sp。可以将S. meliloti沿Medicago trunca-tula根传递。使用模型的土壤缩影,我们直接观察到沿截骨根部的流体标记为Meliloti链球菌,并随着时间的推移跟踪了荧光信号的位移。共同接种两周后,当Colpoda sp。也存在与含有细菌但没有生物的治疗方法相比。直接计数还表明,生存细菌需要生存者才能达到我们缩影的更深层。促进细菌运输可能是土壤生物促进植物健康的重要机制。