执行摘要旧金山国际机场(SFO或机场)处于计划阶段的一系列翻新阶段,以使其校园电气化并减少现场发射的二氧化碳和其他污染物的数量。这项工作的一个主要组成部分将是在整个机场向电力分发电力的大小和构建。由于物理限制,资本成本和可靠性要求,至关重要的是,对于在预期的40至50年的设计寿命中,可预见的最大载荷适当尺寸。最大的预期负载之一将是车辆电气化的结果,包括公共和雇员停车场,包括电气化地面服务设备(EGSE)的空中操作以及可能的电动飞机。
巴巴多斯的普通家庭每天大约使用 11 千瓦时的能源。每个 Powerwall 可提供 13.5 千瓦时的可用能源,但额定功率限制为 5 千瓦。需要进行负载分析,以确保在连续运行期间不会超过电池的能量和额定功率。您可以使用特斯拉移动应用程序来监控您的使用情况并节省电力,以将备用电源覆盖时间延长一天或更长时间。此外,当 Powerwall 与太阳能配对时,它可以继续充电,并有可能无限期地为您的家庭供电。
该集团为民用飞机、公务机和直升机设计和制造各种技术先进的航空结构和部件。作为一级供应商,该集团生产集成航空结构,并在原始设备制造商之前负责管理涉及各种技术和活动的完整工作包。该集团专门从事机翼和尾翼,包括其移动和二级结构,还设计和生产机身部分和其他集成航空结构。其一级能力还包括为客户提供的工程服务,包括概念和初步设计、详细设计(基于模型)、负载分析和静力学、疲劳、损伤容限、冲击、热等的高级模拟。制造工程和原型设计也是 Aernnova 向客户提供的服务的一部分,拥有独立的多功能团队和 MRB、材料和工艺,
1。确定您要备份的最大最大单载电源等级(kW),并选择为该负载供电所需的绝对最小智商电池数量。您可以根据先前安装的智商网关的负载配置文件信息购买更多智商电池,以获得更高的电源。2。计算连接到L1阶段的系统中的总微量逆变器的最大连续输出功率。然后选择所需的智商电池,以便整个PV系统输出交流电源不超过智商电池系统电源额定容量的150%。使用IQ8微型逆变器时不存在此限制;这适用于S系列和IQ7系列微型发电机。3。基于用户定义时期的估计备份负载,计算所需的IQ电池能量存储(KWH)容量和最小智商电池。4。基于站点对功率(KW)和能量容量(kWh)的负载分析,确定存储系统所需的智商总数。
A.安装了以下组件: 脉冲源装置,型号 1210 / 2405-2A,P/N(脉冲源 P/N 和 S/N) 开关 -(开关 P/N) 二极管 -(可选二极管组) 保险丝或断路器 -(保险丝或断路器 P/N) B.根据《精确飞行安装手册》型号 1210 / 2405-2A,P/N PPRI-3000 中的说明(日期为( 插入手册的当前修订日期))和 FAA 咨询通告 43.13-1A 第 11 章和 43.13-2A 第 1 章和第 2 章中的指导,将装置安装在(飞机上的位置)。B.(罗宾逊)该装置按照 Precise Flight, Inc. 的要求安装。图纸 590P0001 和 590P0002 C. 进行了电气负载分析,交流发电机(发电机或其他电源)的修订连续负载不超过容量的 80%。D. 根据 PULSELITE 1210 / 2405-2A 安装手册 P/N PPRI-3000 日期 ____ 进行了完整的操作测试。设备性能令人满意,没有对飞机上现有的部件或系统产生不利影响,符合 FAR 23.1301、FAR 23.1431(或 FAR 25.1301、FAR 25.1431,视情况而定)的要求。(罗宾逊直升机的 FAR 27.1301、FAR 27.1431)E. 飞机设备清单已修订以反映这些变化;重量和平衡数据已修订并放入飞机记录中。
摘要:制定了一种操作电力转换系统(PC)的策略,以最大程度地降低存储系统(ESS)的电量。考虑电源管理系统(PMS)确定ESS操作方法。主要功能包括峰值切割,峰转移和频率调节,通常与电率有关。因此,当价格低和高时,电池将被充电和放电,从而使电池货币化。但是,ESS为电池和PC造成了高昂的成本。因此,正在积极开发重复使用电动汽车(EV)电池的ESS。许多研究人员试图通过开发算法来通过对电力消费者进行电力负载分析来计算最佳ESS容量来最大化ESS的利用。基于此计算选择的ESS可以通过PM进行操作。此ESS可以使用电池状态(SOC),范围从10–90%,使用净现值进行可行性分析,该值反映当前的电力速率。考虑到ESS的初始投资成本与从ESS的发电中获得的效果之间的差异,进行了此可行性分析。在韩国,已经实施了许多政策,以鼓励安装ESS。ESS促进政策一直在2020年实施,以降低电力率,包括电池的合同能力。但是,自2021年以来,该政策已转变以根据每日最大发电量降低电量。因此,增加电池容量的常规方法是不合适的,并且应使用有限的电池来增加利用能力。对于ESS,可以使用由单个和并行结构组成的PCS。安装大容量ESS时,采用使用硅(SI)的PC来降低PC的单位成本。碳化硅(SIC)设备的单位价格最近显着下降。因此,在这项研究中,开发了使用此SIC设备的PC。此外,制定了一种算法,以最大程度地降低ESS的电量,并证明了基于该算法的模块化PC的操作。
图 1:光聚合物分层系统 (Wikipedia.org)。.............................................................. 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。......... 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com).................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。.............................................................. 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。................................................ 5 图 6:FDM 工艺图 (Reprap.org)。.................................................................... 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。.................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com) .................................... 14 图 9:简化的挤压系统,说明轴位置 (Wikipedia.org)。........... 20 图 10:GE Aviation 的增材制造燃油喷嘴 (Rockstroh 等人,2013)。......... 21 图 11:通过 DMLS (EADS) 优化和制造的两个航空航天支架。....... 23 图 12:"Over-the-wall" 设计方法的说明 (Munro & Associates,1989)。...... 24 图 13:成本与影响图“谁投下的阴影最大?” (Munro & Associates,1989)。...................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011)............................................................................................. 26 图 15:alpha 和 beta 旋转对称值(Boothroyd et al,2011)。................... 28 图 16:影响零件处理的几何(左)和其他(右)特征(Boothroyd et al,2011)。...................................................................................................................................... 28 图 17:提高组装简易性的示例(Boothroyd et al,2011)。................................ 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999)。...................................................................................................................... 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999)。................................................................................................ 31 图 20:原始控制器组件(Boothroyd 等人,2011 年)。...................................................... 32 图 21:分析前(左)和分析后(右)的控制器组件(Boothroyd 等人,2011 年)。........................................................................................................................................... 34 图 22:当前门铰链的组件。........................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。.................................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写............................................................................. 37 图 25:重新设计的用于增材制造的门铰链。.................................................... 39 图 26:鹅颈加固前后的视觉对比。........... 41 图 27:重新设计前后球柱塞壳体的视觉对比。........... 41 图 28:原始铰链组件上用于插入计算的投影槽。......... 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。.... 43
图 1:光聚合物分层系统 (Wikipedia.org)。...................................................................... 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。........................................ 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com)....................................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。...................................................................... 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。...................................................... 5 图 6:FDM 工艺图 (Reprap.org)。............................................................................. 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。...................................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com)............................................. 14 ........... 20 图 10:GE Aviation 通过增材制造的燃油喷嘴(Rockstroh 等,2013 年)。 ........................ 21 图 11:通过 DMLS(EADS)优化和制造的两个航空航天支架。 ........................ 23 图 12:“Over-the-wall”设计方法图解(Munro & Associates,1989 年)。 ...... 24 图 13:成本与影响图“谁投射的阴影最大?”(Munro & Associates,1989 年)。 ......................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011 年)......................................................................................................... 26 图 15:alpha 和 beta 旋转对称值(Boothroyd 等,2011 年)。 ................................... 28 图 16:影响零件处理的几何特征(左)和其他特征(右) (Boothroyd et al, 2011). ........................................................................................................................................... 28 图 17:提高装配简易性的示例 (Boothroyd et al, 2011). ............................................................................................................. 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 31 图 20:原始控制器组装 (Boothroyd et al, 2011). ............................................................................................. 32 图 21:分析前(左)和分析后(右)的控制器组装 (Boothroyd et al, 2011). ................................................................................................................................................................. 34 图 22:当前门铰链的组件。 ...................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。 ...................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写。 ...................................................................................... 37 图 25:重新设计的增材制造门铰链。 ...................................................................................... 39 图 26:合并前后鹅颈的视觉比较。 ............................................................................. 41 图 27:重新设计前后球柱塞壳体的视觉比较。 ............................................................................. 41 图 28:原始铰链组件上用于插入计算的投影槽。 ............................................................................. 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。 ............................................................................. 43
图 1:光聚合物分层系统 (Wikipedia.org)。.............................................................. 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。......... 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com).................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。.............................................................. 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。................................................ 5 图 6:FDM 工艺图 (Reprap.org)。.................................................................... 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。.................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com) .................................... 14 图 9:简化的挤压系统,说明轴位置 (Wikipedia.org)。........... 20 图 10:GE Aviation 的增材制造燃油喷嘴 (Rockstroh 等人,2013)。......... 21 图 11:通过 DMLS (EADS) 优化和制造的两个航空航天支架。....... 23 图 12:"Over-the-wall" 设计方法的说明 (Munro & Associates,1989)。...... 24 图 13:成本与影响图“谁投下的阴影最大?” (Munro & Associates,1989)。...................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011)............................................................................................. 26 图 15:alpha 和 beta 旋转对称值(Boothroyd et al,2011)。................... 28 图 16:影响零件处理的几何(左)和其他(右)特征(Boothroyd et al,2011)。...................................................................................................................................... 28 图 17:提高组装便利性的示例(Boothroyd et al,2011)。................................ 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999)。...................................................................................................................... 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999)。................................................................................................ 31 图 20:原始控制器组件(Boothroyd 等人,2011 年)。...................................................... 32 图 21:分析前(左)和分析后(右)的控制器组件(Boothroyd 等人,2011 年)。........................................................................................................................................... 34 图 22:当前门铰链的组件。........................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。.................................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写............................................................................. 37 图 25:重新设计的用于增材制造的门铰链。.................................................... 39 图 26:鹅颈加固前后的视觉对比。........... 41 图 27:重新设计前后球柱塞壳体的视觉对比。........... 41 图 28:原始铰链组件上用于插入计算的投影槽。......... 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。.... 43