1.引言云计算通过提供分区空间来满足业务需求随着时间而变化,从而改变了对可访问和功能计算的访问。这种动力已经对自动化资源管理方法产生了前所未有的需求,这些方法可以动态地调整为各种各样的工作负载轨迹。我们专注于云计算,因为在云计算中,资源的成本相对较高,资源分配通过将CPU,内存,存储和网络带宽等计算资源分配给不同的应用程序和用户来有效地使用资源,从而起着关键作用。不幸的是,传统的资源分配机制可能不足以使具有较高可变性,异质性和可扩展性要求的现代云环境的日益复杂和动态性质不足。
摘要 — 近年来,IT 技术的碳足迹一直备受关注。这种关注主要集中在数据中心的电力消耗上;许多云供应商承诺使用 100% 的可再生能源。然而,这种方法忽略了设备制造的影响。在本文中,我们考虑了地理分布云的可再生能源规模问题,同时考虑了所考虑位置的电网电力消耗以及太阳能电池板和电池制造的碳影响。我们设计了一个线性程序来优化一年内的云规模,考虑了数据中心的全球位置、实际工作负载轨迹和太阳辐射值。我们的结果表明,与完全由太阳能供电的云相比,碳足迹减少了约 30%,与 100% 电网电力模型相比,碳足迹减少了 85%。索引词 — 云计算、可再生能源、能源存储、线性程序、作业调度、跟随太阳、绿色计算
减少对碳密集型能源的依赖对于减少电网的碳足迹至关重要。尽管电网中清洁、可再生能源的部署越来越多,但仍有相当一部分电网需求是通过传统的碳密集型能源来满足的。在本文中,我们研究了使用部署在电网中的储能来减少电网碳排放的问题。虽然储能以前曾用于电网优化,例如削峰和平滑间歇性能源,但我们的见解是使用分布式存储使公用事业公司能够减少对效率较低、碳密集度最高的发电厂的依赖,从而减少其总体排放足迹。我们将分布式储能的排放感知调度问题表述为优化问题,并使用一种强大的优化方法,该方法非常适合处理负载预测中的不确定性,尤其是在存在太阳能和风能等间歇性可再生能源的情况下。我们使用最先进的神经网络负载预测技术和来自 1,341 户家庭的配电网的实际负载轨迹来评估我们的方法。我们的结果表明,每年的碳排放量减少了 50 多万公斤,相当于电网排放量下降了 23.3%。
摘要 本文介绍了一种负载调制平衡放大器 (LMBA) 的设计方法,重点是减轻 AMPM 失真。通过引入二次谐波控制作为设计自由度,可以选择复杂的负载轨迹来补偿设备中的 AMPM 非线性,而不会显著影响效率。数学推导伴随着基于闭式方程的设计程序,以仅基于负载牵引数据来制造 LMBA。通过对三种不同设计进行测量比较来验证该理论,这些设计在伪 RF 输入 Doherty 类 LMBA 配置中以 2.4 GHz 运行,具有 J 类、-B 类和 -J* 类主 PA。J 类原型的性能优于其他设计,在峰值输出功率和 6 dB 回退时分别具有 54% 和 49% 的漏极效率,并且在此功率范围内只有 4 度的 AM-PM。当使用 10 MHz、8.6 dB PAPR LTE 信号驱动时,无需数字预失真,即可实现 40.5% 的平均效率和优于 − 40.5 dBc 的 ACLR。
联邦学习 (FL) 是一种新兴的机器学习技术,它支持跨数据孤岛或边缘设备进行分布式模型训练,而无需数据共享。然而,与集中式模型训练相比,FL 不可避免地会带来效率低下的问题,这将进一步增加未来机器学习本已很高的能耗和相关的碳排放。减少 FL 碳足迹的一种方法是根据电网中特定时间和地点可能出现的可再生过剩能源的可用性来安排训练作业。然而,面对如此不稳定且不可靠的资源,现有的 FL 调度程序无法始终确保快速、高效和公平的训练。我们提出了 FedZero,这是一个专门依靠可再生过剩能源和计算基础设施的闲置容量运行的 FL 系统,可有效地将训练的运营碳排放量降至零。通过利用能源和负荷预测,FedZero 通过选择客户端实现快速收敛和公平参与,从而利用过剩资源的时空可用性。我们基于实际的太阳和负载轨迹进行的评估表明,在上述约束条件下,FedZero 的收敛速度明显快于现有方法,同时消耗的能量更少。此外,它对预测误差具有很强的鲁棒性,可扩展到数万个客户端。
联邦学习 (FL) 是一种新兴的机器学习技术,它支持跨数据孤岛或边缘设备进行分布式模型训练,而无需数据共享。然而,与集中式模型训练相比,FL 不可避免地会带来效率低下的问题,这将进一步增加未来机器学习本已很高的能耗和相关的碳排放。减少 FL 碳足迹的一种方法是根据电网中特定时间和地点可能出现的可再生过剩能源的可用性来安排训练作业。然而,面对如此不稳定且不可靠的资源,现有的 FL 调度程序无法始终确保快速、高效和公平的训练。我们提出了 FedZero,这是一个专门依靠可再生过剩能源和计算基础设施的闲置容量运行的 FL 系统,可有效地将训练的运营碳排放量降至零。通过利用能源和负荷预测,FedZero 通过选择客户端实现快速收敛和公平参与,从而利用过剩资源的时空可用性。我们基于实际的太阳和负载轨迹进行的评估表明,在上述约束条件下,FedZero 的收敛速度明显快于现有方法,同时消耗的能量更少。此外,它对预测误差具有很强的鲁棒性,可扩展到数万个客户端。
联邦学习 (FL) 是一种新兴的机器学习技术,它支持跨数据孤岛或边缘设备进行分布式模型训练,而无需数据共享。然而,与集中式模型训练相比,FL 不可避免地会带来效率低下的问题,这将进一步增加未来机器学习本已很高的能耗和相关的碳排放。减少 FL 碳足迹的一种方法是根据电网中特定时间和地点可能出现的可再生过剩能源的可用性来安排训练作业。然而,面对如此不稳定且不可靠的资源,现有的 FL 调度程序无法始终确保快速、高效和公平的训练。我们提出了 FedZero,这是一个专门依靠可再生过剩能源和计算基础设施的闲置容量运行的 FL 系统,可有效地将训练的运营碳排放量降至零。通过利用能源和负荷预测,FedZero 通过选择客户端实现快速收敛和公平参与,从而利用过剩资源的时空可用性。我们基于实际的太阳和负载轨迹进行的评估表明,在上述约束条件下,FedZero 的收敛速度明显快于现有方法,同时消耗的能量更少。此外,它对预测误差具有很强的鲁棒性,可扩展到数万个客户端。
在现代通信标准中,功率放大器(PA)必须在越来越大的动态范围和带宽上实现高效率,同时保持严格的线性要求。效率提高可以通过负载调制体系结构(例如Doherty功率放大器)来实现。但是,基于此概念的放大器通常与线性降解有关。在4G网络中,数字预性用于减轻负载调节的放大器的非线性。但是,5G NR系统的更大带宽和复杂性限制了DPD的适用性。本论文旨在解决高效率功率扩增器的固有线性,以便无需有限的预期,可以充分地进行效率。它专注于负载模块的平衡放大器(LMBA)。LMBA是最近的建筑,作为经典Doherty PA的替代品。这里提出了对LMBA的新数学分析,重点是负载调制轨迹。这种基于阻抗的分析导致开发了一种新方法,用于从主晶体管的载荷测量值中设计线性/有效的功率放大器。将此方法应用于10W gan Hemt,我们表明,在单端配置中具有相似性能的三个不同的放大器在LMBA档案中使用时的性能非常不同。根据我们的理论,LMBA的幅度(AM-AM)和相(AM-PM)畸变取决于负载轨迹。然后,在GAAS技术中使用相同的方法在1W频段1W MMIC放大器上应用。选择它以使相失真最小化,然后可以选择第二个谐波终止以最大化效率。j级第二谐波终止被确定为最佳情况,导致-40.5dBC ACLR(相邻的通道泄漏比),当用10 MHz刺激10 MHz时,在2.4GHz的耗尽效率为40.5%,为8.6db Papr(峰值平均电力比)LTE信号。但是,在这些频率下,第二个谐波终止对功率放大器的效率的影响很小。缺乏这种额外的自由度,不能为缓解AM-PM选择载荷轨迹,并且效率/线性权衡会降低。最后,提出了阻抗不匹配在功率放大器中的起源和影响。研究了输出阻抗不匹配下负载调制平衡放大器的性能。我们观察到,如果未在输出处显示最佳阻抗,则会取消LMBA的效率提高。然后提出了一种新型的双重平衡LMBA,以实现高效率功率放大器中的不匹配弹性。