注意:该报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府,或其任何机构,或其任何雇员,其任何承包商,分包商或其雇员都不会对任何信息,设备,产品或程序所披露的任何信息,设备,产品或程序的准确性,完整性或有效性,表明其使用不属于私有权利的任何法律责任或责任。以此处参考任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或对其任何代理机构或其承包商或分包商的认可,建议或偏爱。本文所表达的观点和意见不一定陈述或反映美国政府,其任何机构或其承包商的观点和意见。
摘要:使用三角大学核实验室中的中子束5至27 MeV,使用微琴探测器测量塑料闪烁体EJ-260的非线性能量响应。第一阶和二阶Birks的常数是从数据中提取的,发现为𝑘=(8。70±0。93)×10 - 3 g / cm 2 / mev和𝑘=(1。< / div>42±1。 00)×10-5(g / cm 2 / meV)2。 该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。 这些测量结果将改善塑料闪烁体检测器的能量非线性建模。 特别是,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。42±1。00)×10-5(g / cm 2 / meV)2。该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。这些测量结果将改善塑料闪烁体检测器的能量非线性建模。,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。
氢化酶(H 2 ASE)有效地将H +与H 2相互互换,其离职数(吨)(10 2 - 5 mol S -1)。1,2基于这些金属酶的活性位点存在的金属中心,三种类型的h 2 ASE在自然界中是已知的 - [Fe - Fe] H 2 ASE,[Ni - Fe] H 2 ASE和fe-fe-fe-H 2 ASE。3,4中,[Fe - Fe] H 2 ASE对H 2代的选择更具选择性,[Ni - Fe] H 2 ASE对H 2氧化是选择性的,而在氢化物受体/供体底物的前提中,仅Fe-H 2 ASE与H 2或产生H 2或产生H 2。5,6 [Fe - Fe] H 2 ASE活性位点的高分辨率X射线晶体结构表明,A Fe 2 S 2(CO)3(CO)3(CO)3(CN)2有机金属核心(2FE子站点)的一个铁中心附着于[Fe 4 s 4]通过铜氨基固醇(Schemine(Schemine 1a and B))。4,7,8键二甲基二硫代硫酸酯(ADT)部分桥梁之间的两个Fe 2 S 2 S 2(CO)3(CO)3(CN)2有机型tallic核心之间的桥梁。两个铁中心中的每个中心都与一个 - 配体和一个 - cn-配体协调。9,10 A - Co Gridges两者
从低成本,非易光度和高运营安全性的优点中获得的好处,可充电电池已成为大规模能源储存应用的有希望的候选人。在各种金属离子/非金属电荷载体中,质子(H +)作为电荷载体具有许多独特的特性,例如快速质子差异动力学,低摩尔质量和较小的水合离子半径,它们具有赋予水性质子电池(APB),具有正式的速率能力,长期的较低型较高的型号和出色的型号仪表仪,并具有出色的仪表仪。此外,具有结构多样性,丰富的质子存储位点和丰富资源的优势的氧化还原活性有机分子被认为是APB的有吸引力的电极材料。但是,APB中有机电极的电荷存储和传输机制仍处于起步阶段。因此,发现合适的电极材料并发现H +储存机制对于在APB中应用有机材料是显着的。在此,审查了有机材料的最新研究进度,例如小分子和APB的聚合物。此外,还提供了使用有机电极作为阳极和/或阴极的APB进行的全面摘要和评估,尤其是关于它们的低温和高功率性能,以及用于指导理性设计以及基于有机电极的APB的系统讨论。
和锆酸盐(例如,Bace 0.6 Zr 0.3 Y 0.1 O 3-δ39,Bace 0.2 Zr 0.7 Y 0.1 O 3-δ40),Ytterbium和Ytterbium and yttrium co-
这项研究评估了四种情况下聚合物电解质膜燃料电池(PEMFC)的废热的利用:热量和功率组合(CHP),合并的冷却,加热和功率(CCHP),合并的冷却和功率(CCP),以及与有机兰克(Orc Cyce)一起产生有机的电力(ORC)。该方法涉及热力学建模和参数分析,以评估能源效率,节省燃料和环境影响。CCHP方案表明,总体系统效率最高,为87%,可节省46%的燃料和降低55%的CO₂排放量。ORC方案利用废物来发电,可实现41%的电效率,总体效率为68%,节省了26%的燃料和49%的CO₂排放量。这项研究表明,整合CCHP系统在能源,环境和经济指标之间提供了卓越的性能。这些发现通过优化废物恢复,减少排放并根据消费者需求和运营条件提供量身定制的解决方案来促进可持续能源系统。
摘要:质子作为最轻元素H的阳离子形式,被认为是“摇椅”电池中最理想的电荷载体。然而,目前对质子电池的研究尚处于起步阶段,它们通常容量较低且易遭受严重的酸性腐蚀。本文开发了电化学活化的金属H 1.75 MoO 3 纳米带作为质子存储的稳定电极。电化学预插的质子不仅通过强OH键直接与末端O3位点结合,而且通过氢键与相邻层中的氧相互作用,在H 1.75 MoO 3 纳米带中形成氢键网络,并且由于其超低活化能~0.02 eV而实现无扩散的Grotthuss机制。据我们所知,这是首次报道的基于Grotthuss机制的质子存储无机电极。此外,质子插入 MoO 3 并形成 H 1.75 MoO 3 会诱发强烈的 Jahn-Teller 电子-声子耦合,从而呈现金属状态。因此,H 1.75 MoO 3 表现出出色的快速充电性能,在 2500 C 时可保持 111 mAh/g 的容量,大大优于最先进的电池电极。更重要的是,基于 H 1.75 MoO 3 组装的对称质子离子全电池在 12.7 kW/kg 的超高功率密度下可提供 14.7 Wh/kg 的能量密度,优于快速充电超级电容器和铅酸电池。
摘要:在这里,在第一次,我们介绍了有关高室,单相钙晶的质子电导率的数据。bazr 0.2 sn 0.2 ti 0.2 hf 0.2 ce 0.2 o 3 - δ,bazr 0.2 sn 0.2 sn 0.2 ti 0.2 ti 0.2 hf 0.2 hf 0.2 hf 0.2 -y 0.2 o 3 -δ,bazr 1/7 sn 1/7 sn 1/7 ti 1/7 ti 1/7 ti 1/7 hf 1/7 hf 1/7 hf 1/7 hf 1/7 nb 1/7 nb 1/7 y 1/7 y 1/7 y 1/7 o 3 0.15 0.15 ti 0.15 ti 0.15 haz and bazr and bazr and bazr and bazr CE 0.15 NB 0.15 Y 0.10 O 3-δ单相蛋白酶合成。在电测量之前,使用X射线差异(XRD),扫描电子显微镜(SEM),X射线光电光谱(XPS)和热重分析(TGA)表征材料。以下实验结果表明,研究的高渗透钙晶是质子导体:(1)从干燥到潮湿的气氛转换后观察到的质量增加,将水掺入材料结构中。(2)电化学阻抗光谱(EIS)表明,在大气中存在水蒸气的情况下,总电导率增加,而其激活能量降低。(3)用H 2 O和D 2 O彼此之间的大气中的电导率彼此之间存在,显示了质子导体典型的同位素在高渗透氧化物中的效应。o
亲爱的编辑,作物基因组编辑通过实现精英品种的精确改善,比常规育种具有巨大的优势。在谷物中,大麦(Hordeum vulgare L.)在全球重要性中处于第四位,并且在麦芽和酿造中具有广泛的应用。在像东亚这样的地区,大麦谷物具有传统的烹饪用途,直接煮熟为蒸大麦,烤成茶,或发酵用于味o和酱油,例如味道和酱油。值得注意的是,最近的健康趋势扩大了对年轻大麦草作为功能健康食品的兴趣。由于其富含维生素,纤维和类黄酮的含量,大麦草被加工成绿色果汁(Havlíková等人。2014)。这种绿色粉末表现出在抗毒剂,低脂肪和抗糖尿病活动中的有效性(Yu等人。2003;吉泽等。 2004; Takano等。 2013)。 在日本,雨季经常在收获季节之前,这使得预求发对谷物产量的挑战。 为了打扮,精英品种培养了早期的标题特征。 但是,这些特征对年轻的大麦草产量产生负面影响。 具体来说,年轻峰值的出现降低了草的商业价值。 当前归因于全球变暖的当前气候变化已加速且不稳定的尖峰变速,降低了草产量。 繁殖AP的转变,重点是当代品种中的晚期性状,对于保持一致的草产量至关重要。2003;吉泽等。2004; Takano等。2013)。在日本,雨季经常在收获季节之前,这使得预求发对谷物产量的挑战。为了打扮,精英品种培养了早期的标题特征。但是,这些特征对年轻的大麦草产量产生负面影响。具体来说,年轻峰值的出现降低了草的商业价值。当前归因于全球变暖的当前气候变化已加速且不稳定的尖峰变速,降低了草产量。繁殖AP的转变,重点是当代品种中的晚期性状,对于保持一致的草产量至关重要。我们的vious作品引入了planta粒子轰击 - 核糖核蛋白
