钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。
荧光检测核轨迹是一种辐射测量方法,最初是由Akselrod和使用Al 2 O 3:C,Mg单晶的同事开发的(Akselrod等,2006a; Akselrod等,2006b),并成功地引入了应用程序的各个领域(Al.akselenber and kousselrodg,akselrodg and akselrodg and.220; akselrod等人,2006b)。 2018年; Akselrod和Sykora,2013年;在过去的几年中,发现另一种材料适合用作荧光核轨道检测器(FNTD):未含量的氟氟化锂晶体(Bilski和Marczewska,2017; Bilski等,2019b)。LIF中粒子轨迹的荧光成像的物理机制是基于创建的,这是通过电离颗粒F 2颜色中心在晶体晶格中的产生。这些中心用蓝光(在445 nm左右的波长)激发时,在红色光谱范围内发出光致发光(在670 nm处达到峰值)。使用荧光显微镜,使用高放大倍数和灵敏的数码相机,可以以低于1微米的分辨率对辐射轨道进行成像。轨道强度是从轨道发出的荧光灯的强度,取决于电离密度,即,即局部沉积的能量的量。lif晶体已成功地用于图像各种离子的轨道,从氦与铁不等(Bilski等,2019a)。对于质子,对于高能梁,像放射疗法中使用的光束一样,由于这些颗粒的电离密度较低,很难观察到原代质子的单个轨道。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。 这些斑点的数量比撞击晶体上的质子数量低的数量级。 它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。 因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。 另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。 因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。 该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。这些斑点的数量比撞击晶体上的质子数量低的数量级。它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。
C /2 倍率下。 [5] 已证明,添加 FEC 的 Sn4P3 具有比锑 (718 mAh g −1) 更高的容量,尽管倍率较低,约为 C/10。 [6] 许多过渡金属氧化物和硫化物也因其高循环稳定性而被研究。与 Na2O 相比,硫化物电极转化为 Na2S 的可逆性更好,因此人们对其兴趣日益浓厚。[7–9] 这些电极有望实现高容量,但由于循环过程中体积膨胀,库仑效率低。 [5] 我们通过预处理来避免这种膨胀,形成限制体积变化的新相。过渡金属二硫属化物 (TMD) 如 TiS2 ,是锂离子电池初期开发过程中最早作为插层正极研究的材料之一。 [10] 客体离子与硫族化物发生转化反应形成 A2X(A=Li、Na;X=S、Se、Te),导致体积膨胀,限制容量。[11–14] 然而,客体与硫族化物主体之间较大的间隙体积和较弱的静电相互作用仍然是使用 TMD 电极的优势,尤其是在超锂离子电池的开发中。[15] 与氧化物相比,过渡金属硫化物中的钠电荷存储动力学有所改善,因此研究工作取得了进展。[7] 范德华 CrS2 被预测为 Na 和 Mg 的良好插层主体,它可以避免困扰 TMD 电池的副反应,但尚未分离为体相。[7,16]
钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:对离子液体 (IL) 进行长程有序排列不仅可以提高其在所需应用中的性能,还可以帮助阐明结构和性能之间的微妙关系。然而,这仍然是一个挑战,迄今为止还没有报道过相关实例。在此,我们报道了一种通过基于配位自组装的网状化学实现结晶 IL 的可行策略。通过设计 IL 桥接配体然后将其与金属团簇连接来制备 IL 1 MOF。IL 1 MOF 具有独特的结构,其中 IL 配体排列在长程有序框架上,但具有不稳定的离子中心。这种结构使 IL 1 MOF 突破了固体 IL 的质子传导率低于其对应的块体 IL 的典型限制。IL 1 MOF 在很宽的温度范围内表现出比其对应的 IL 单体高 2-4 个数量级的质子传导率。此外,通过将IL限制在超微孔(<1纳米)内,IL 1 MOF将液固相转变温度抑制到低于@150 8C,使其能够在零下温度范围内以高导电性发挥作用。
摘要 — 在本文中,我们使用质子束描述了 NVIDIA Xavier 系列片上系统 (SoC) 中的两个嵌入式 GPU 设备。我们比较了分别针对商业和汽车应用的 NVIDIA Xavier NX 和工业设备。我们使用不同的功率模式评估了两个模块及其子组件(CPU 和 GPU)的单粒子效应 (SEE) 率,并首次尝试使用其基于 ARM 的系统中包含的在线测试工具来识别它们的确切来源。我们的结论是,SoC 的 CPU 复合体中最敏感的部分是各种缓存结构的标签阵列,而在 GPU 中没有观察到任何错误,可能是因为在辐射活动期间,与应用程序的 CPU 部分相比,它的执行速度更快。
氢是地球上数量最多、最简单的元素。它可以储存和释放可用能量。然而,氢并不单独存在于自然界中,必须由包含它的不同元素制成。例如,它可以与碳(如石油、天然气)和水中的氧(H 2 O)结合[1]。氢的每千克比能量是所有燃料中最高的(即 120-140 MJ/kg),但其能量密度不太适合储存(即 2.8-10 MJ/L),具体取决于物理储存方式(如压缩(350-700 bar)、液体)[2]。一方面,全球利用重整工艺从天然气、煤炭和石油中生产的氢气约占 96%。另一方面,利用水电解工艺将去离子水分解为氢气和氧气约占全球氢气产量的 4% [3]。尽管氢气本质上是一种清洁的能源,但它需要能量来生产;所采用的能源类型有所不同。由化石燃料生产的氢气由于间接污染而被称为灰氢。为了供应水电解过程,可再生能源 (RES)(例如风力涡轮机、光伏)是最适合的,因为它们可以限制对环境的影响。通过这种方式,可以获得所谓的绿色氢气。将这种氢气混合到现有的天然气管道网络中已被提议作为增加可再生能源系统产量的一种手段。通过管道输送氢气和甲烷混合物也有悠久的历史;最近,风电装机容量的快速增长以及对燃料电池电动汽车近期市场准备的关注,增加了利益相关者的兴趣 [ 4 , 5 ]。
使用单个电子或μ子事件和终态喷流来测量顶夸克对 (tt) 的极化和自旋关联。测量基于 CMS 实验在√ s = 13 TeV 下收集的 LHC 质子-质子碰撞数据,对应于积分光度 138 fb − 1 。通过对数据进行分箱似然拟合,同时提取极化矢量和自旋关联矩阵的所有系数。测量是全面进行的,并包含其他可观测量,例如 tt 系统的质量和 tt 静止框架中的顶夸克散射角。测得的极化和自旋关联与标准模型一致。从测得的自旋关联,应用佩雷斯-霍罗德基标准得出关于 tt 自旋纠缠的结论。标准模型预测在生产阈值和 tt 系统高质量时 tt 态的纠缠自旋。这是首次在高 tt 质量事件中观察到纠缠,其中大部分 tt 衰变是空间分离的,预期和观察到的显著性均高于 5 个标准差。
在pH极端繁殖的生物被分类为嗜酸剂,它们在pH 3以下表现出最佳生长,或碱性含量,或碱性含量在pH值大于9的最佳生长(Rothschild and Mancinelli 2001; Wiegel 2011)。嗜酸剂和碱性。嗜酸剂在酸性矿山排水,溶液场,酸热温泉和富马尔,煤变质和生物反应器的位置繁盛。这些环境具有较低的pH值,温度从25°C到90°C以上,压力最大为5 MPa,低盐度,一些重金属,以及厌氧或有氧条件(Seckbach和Libby 1970; Hallberg andLindstrortstrortströM9994; Golyshina et al。2000;他等人。2004; Ferris等。2005;吉田等。 2006; Hallberg等。 2010; Reeb和Bhattacharya 2010)。 嗜酸剂使用多种pH稳态机制,涉及限制细胞质膜的质子进入和质子清除质子及其对细胞质的作用。 为了帮助维持δpH,嗜酸剂具有高度不可渗透的细胞膜,可将质子插入胞质中(Konings等人。 2002)。 因为膜质子的通透性决定了质子向内泄漏的速率,质子通透性之间的平衡,质子通过高能和运输系统的旋转以及向外质子泵的速率决定了细胞是否可以维持适当的质子运动力(PMF)。 一个高度不可渗透的细胞膜的一个例子是古细菌特异性2005;吉田等。2006; Hallberg等。 2010; Reeb和Bhattacharya 2010)。 嗜酸剂使用多种pH稳态机制,涉及限制细胞质膜的质子进入和质子清除质子及其对细胞质的作用。 为了帮助维持δpH,嗜酸剂具有高度不可渗透的细胞膜,可将质子插入胞质中(Konings等人。 2002)。 因为膜质子的通透性决定了质子向内泄漏的速率,质子通透性之间的平衡,质子通过高能和运输系统的旋转以及向外质子泵的速率决定了细胞是否可以维持适当的质子运动力(PMF)。 一个高度不可渗透的细胞膜的一个例子是古细菌特异性2006; Hallberg等。2010; Reeb和Bhattacharya 2010)。嗜酸剂使用多种pH稳态机制,涉及限制细胞质膜的质子进入和质子清除质子及其对细胞质的作用。为了帮助维持δpH,嗜酸剂具有高度不可渗透的细胞膜,可将质子插入胞质中(Konings等人。2002)。 因为膜质子的通透性决定了质子向内泄漏的速率,质子通透性之间的平衡,质子通过高能和运输系统的旋转以及向外质子泵的速率决定了细胞是否可以维持适当的质子运动力(PMF)。 一个高度不可渗透的细胞膜的一个例子是古细菌特异性2002)。因为膜质子的通透性决定了质子向内泄漏的速率,质子通透性之间的平衡,质子通过高能和运输系统的旋转以及向外质子泵的速率决定了细胞是否可以维持适当的质子运动力(PMF)。一个高度不可渗透的细胞膜的一个例子是古细菌特异性
