标准模型(比如 PAC 框架)并未捕捉到标记数据和未标记数据之间的区别,而这种区别催生了主动学习领域,在主动学习中,学习者可以要求特定点的标签,但每个标签都需要付费。这些查询点通常从未标记的数据集中选择,这种做法称为基于池的学习 [10]。目前也有一些关于人工创建查询点的研究,包括大量理论成果 [1, 2],但这种方法存在两个问题:首先,从实用角度来看,这样产生的查询可能非常不自然,因此人类很难进行分类 [3];其次,由于这些查询不是从底层数据分布中挑选出来的,因此它们在泛化方面的价值可能有限。在本文中,我们重点关注基于池的学习。
大脑年龄估计涉及从大脑图像中预测一个人的生物年龄,这为衰老过程和神经退行性疾病的发展提供了宝贵的见解。进行大规模的数据集进行医学图像分析是一项具有挑战性且耗时的任务。现有方法主要取决于大型数据集,这些数据集很难获得且昂贵。这些方法还需要具有大量参数的复杂,资源密集型模型,需要大量的处理能力。因此,至关重要的是开发创新的方法,可以通过有限的数据集并有效利用计算资源来实现稳健的性能。本文提出了一种用于脑年龄估计的新型基于切片的双流方法(贪婪的双流模型)。此方法解决了大数据集要求和计算资源强度的局限性。提出的方法结合了大脑的局部和全球方面,从而完善了对特定目标区域的关注。该方法采用四个骨干来根据本地和全球特征来预测年龄,并以最终模型进行年龄校正。我们的方法在同上的测试集上证明了3。25年的平均绝对误差(MAE),其中仅包含289名受试者。为了证明任何小数据集的方法的鲁棒性,我们使用IXI数据集分析了提出的方法,并在IXI的测试集上实现了4。18年的MAE。GDSM模型的代码可在https://github.com/iman2693/gdsm上找到。通过利用双流和贪婪的策略,这种方法实现了效率和稳健的性能,使其与其他最先进的方法相媲美。
多代理路径查找(MAPF)是在共享环境中发现无碰撞路径的问题,每个代理一个是每个代理的一个问题,同时最小化了旅行时间的总和。由于最佳地求解MAPF是NP-HARD,因此研究人员已经使用了副本且有效地求解MAPF的算法。基于优先级的搜索(PBS)是为此目的的领先算法。它一次找到一个单个代理的路径,并通过将优先级分配给碰撞代理并在其搜索过程中重新确定其路径来解决碰撞。但是,对于具有高密度的代理和障碍物的MAPF实例,PBS变得无效。因此,我们介绍了贪婪的PBS(GPB),该PBS(GPBS)使用贪婪的策略来通过最大程度地减少代理之间的碰撞数量来加快PBS。然后,我们提出了进一步加速GPB的技术,即部分扩展,目标推理,诱导的约束和软重新启动。我们表明,具有所有这些改进的GPB的成功率高于1分钟的运行时间限制的最先进的次优算法,尤其是对于具有小地图和密集障碍的MAPF实例。
很少有 SAC 犯罪会导致罪犯被识别或案件被起诉或传唤。我们发现,在从呼叫管理到最终结案的所有阶段,许多警队都缺乏正确记录、调查和管理 SAC 的能力。在某些情况下,警察的能力也受到质疑。这要么是由于缺乏实践技能,要么是由于缺乏有助于他们取得更好结果的联合任务或解决问题的流程。在一些警队中,前线制服响应人员调查 SAC,其中许多警官告诉我们,管理和相互竞争的需求延迟了调查。
基因序列聚类在计算生物学和生物信息学中非常重要且重要,用于研究系统发育关系和基因功能预测等。随着生物学数据量的快速生长(基因/蛋白质序列),基因序列聚类算法在低精度和效率方面面临着更多挑战。 基因序列数据库中增长的冗余序列通常有助于大多数聚类方法的记忆和计算需求的增加。 例如,原始的基于贪婪的增量比对(GIA)聚类算法获得了很高的精度聚类结果,但效率非常低。 已经开发了有效的贪婪增量聚类算法,其精确成本降低了,通常可以关闭速度的贸易聚类精确度以提高速度。 需要在精度和速度之间取得更好平衡的算法。 本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。 ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。 四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。 与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。 此外,我们开发了一个多节点版本来处理大型数据集。 该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。随着生物学数据量的快速生长(基因/蛋白质序列),基因序列聚类算法在低精度和效率方面面临着更多挑战。基因序列数据库中增长的冗余序列通常有助于大多数聚类方法的记忆和计算需求的增加。例如,原始的基于贪婪的增量比对(GIA)聚类算法获得了很高的精度聚类结果,但效率非常低。已经开发了有效的贪婪增量聚类算法,其精确成本降低了,通常可以关闭速度的贸易聚类精确度以提高速度。需要在精度和速度之间取得更好平衡的算法。 本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。 ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。 四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。 与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。 此外,我们开发了一个多节点版本来处理大型数据集。 该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。算法。本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。此外,我们开发了一个多节点版本来处理大型数据集。该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。强可伸缩性测试表明,NGIA的多节点版本可以以31%的并行效率扩展32个线程。©2022 Elsevier B.V.保留所有权利。
人工智能 (AI) 和深度学习 (DL) 现已无处不在,应用范围从个人助理到医疗保健。如今,随着移动计算和物联网的加速迁移,广泛的终端设备会产生大量数据,这决定了边缘计算范式的兴起,在这种范式中,计算资源分布在具有高度异构容量的设备之间。在这种分散的情况下,高效的组件放置和资源分配算法对于最佳地协调计算连续资源至关重要。在本文中,我们提出了一种工具,可在设计时有效解决 AI 应用程序的组件放置问题。通过随机贪婪算法,它可以确定在异构资源(包括边缘设备、基于云 GPU 的虚拟机和功能即服务解决方案)中提供性能保证的最低成本放置位置。
摘要:量子态的制备是量子信息处理的核心。贪婪算法提供了一种有效制备量子态的潜在方法。然而,标准贪婪算法通常不能取全局最大值,而是停留在局部最大值上。基于标准贪婪算法,本文提出了一种改进版本来设计动态脉冲以实现通用量子态制备,即从任意状态制备任意状态。作为应用,我们将该方案应用于半导体量子点和超导电路中单量子比特态和双量子比特态的通用制备。评估结果表明,我们的方案在具有同等高效率的同时,以更高的制备质量优于其他数值优化方法。与新兴的机器学习相比,它表现出更好的可访问性,并且不需要任何训练。此外,数值结果表明,我们的方案生成的脉冲序列对各种错误和噪声具有鲁棒性。我们的方案为少级系统和有限作用空间量子控制问题的优化开辟了一条新途径。