大脑年龄估计涉及从大脑图像中预测一个人的生物年龄,这为衰老过程和神经退行性疾病的发展提供了宝贵的见解。进行大规模的数据集进行医学图像分析是一项具有挑战性且耗时的任务。现有方法主要取决于大型数据集,这些数据集很难获得且昂贵。这些方法还需要具有大量参数的复杂,资源密集型模型,需要大量的处理能力。因此,至关重要的是开发创新的方法,可以通过有限的数据集并有效利用计算资源来实现稳健的性能。本文提出了一种用于脑年龄估计的新型基于切片的双流方法(贪婪的双流模型)。此方法解决了大数据集要求和计算资源强度的局限性。提出的方法结合了大脑的局部和全球方面,从而完善了对特定目标区域的关注。该方法采用四个骨干来根据本地和全球特征来预测年龄,并以最终模型进行年龄校正。我们的方法在同上的测试集上证明了3。25年的平均绝对误差(MAE),其中仅包含289名受试者。为了证明任何小数据集的方法的鲁棒性,我们使用IXI数据集分析了提出的方法,并在IXI的测试集上实现了4。18年的MAE。GDSM模型的代码可在https://github.com/iman2693/gdsm上找到。通过利用双流和贪婪的策略,这种方法实现了效率和稳健的性能,使其与其他最先进的方法相媲美。
主要关键词