Loading...
机构名称:
¥ 1.0

大脑年龄预测研究旨在可靠地估计个体年龄年龄与基于神经成像数据的预测年龄之间的差异,这已被认为是对疾病和认知下降的信息衡量。由于大多数先前的研究仅依赖于磁共振成像(MRI)数据,因此我们在此研究是否使用大量的健康受试者(N = 613岁,年龄18-88岁,年龄18-88岁)将结构MRI与功能性磁脑表生矩(MEG)信息相结合,以改善年龄预测。为此,我们研究了降低维度降低和多元关联技术的性能,即主成分分析(PCA)和规范相关性分析(CCA),以应对神经影像数据的高维度。与使用MRI功能(MAE为5.33岁)相比,使用MEG功能(9.60岁的平均绝对误差(MAE)为9.60年)的性能较差,但是将这两种功能集结合在一起的堆叠模型改善了年龄预测的性能(MAE 4。88年)。此外,我们发现PCA导致了劣质性能,而CCA与高斯工艺回归模型结合使用,产生了最佳的预测性能。值得注意的是,CCA使我们能够可视化有助于大脑时代预测的显着贡献的特征。我们发现,皮层结构的MRI特征比皮质特征更可靠,并且光谱MEG测量比Connectiv-Ity指标更可靠。我们的结果提供了对脑衰老反射的基本过程的见解,对鉴定可靠的神经退行性疾病的可靠生物标志物产生了希望,这些疾病在寿命后期出现。

从结构MRI和MEG数据估算大脑年龄

从结构MRI和MEG数据估算大脑年龄PDF文件第1页

从结构MRI和MEG数据估算大脑年龄PDF文件第2页

从结构MRI和MEG数据估算大脑年龄PDF文件第3页

从结构MRI和MEG数据估算大脑年龄PDF文件第4页

从结构MRI和MEG数据估算大脑年龄PDF文件第5页

相关文件推荐

2023 年
¥1.0