Loading...
机构名称:
¥ 3.0

在许多学科(例如个性化医学)中,随着时间的推移估算异质治疗效果(HTE)至关重要。现有的此任务的作品主要集中在基于模型的学习者上,这些学习者适应了特定的机器学习模型和调整机制。相比之下,模型不足的学习者(所谓的元学习者)在很大程度上没有探索。在我们的论文中,我们提出了几个元学习者,这些学习者可以与型号不合时宜,因此可以与任意机器学习模型(例如变形金刚)结合使用,以随着时间的推移估算HTES。然后,我们提供了一项全面的理论分析,该分析表征了不同的学习者,并使我们能够洞悉特定的学习者何时更可取。此外,我们提出了一种新颖的IVW-DR-LEARNER,即(i)使用双重稳健(DR)和正交损失; (ii)利用我们得出的逆变量权重(IVW),这些权重稳定了DR-als。由于DR-loss中的反质量反应产物,我们的IVW减小极端轨迹,导致估计方差较低。我们的IVW-DR-LEARNER在我们的实验中取得了卓越的性能,尤其是在重叠率较低和长期视野的方案中。

模型 - 敏捷的元学习者用于估计

模型 - 敏捷的元学习者用于估计PDF文件第1页

模型 - 敏捷的元学习者用于估计PDF文件第2页

模型 - 敏捷的元学习者用于估计PDF文件第3页

模型 - 敏捷的元学习者用于估计PDF文件第4页

模型 - 敏捷的元学习者用于估计PDF文件第5页

相关文件推荐