2015 年,马克创立了 418 Intelligence,这是美国情报界首创技术的衍生产品,旨在实现社区防御在网络安全威胁管理方面的未开发潜力,并通过技能加速和众包解决网络人才危机。通过这项工作,他开发了一个平台,可以实现实时威胁信息共享和集体防御,并首次使网络威胁搜寻和分析具有协作性、众包性和激励驱动性。马克认为,这种方法可以改变全国网络人才和经济机会的分布。2021 年,这些努力成功地将来自肯塔基州东部农村前煤炭产区的首批实习生中的 80% 以上安排到全职工作岗位,担任远程 IT/网络安全分析师。2022 年,这种方法将通过华盛顿州和路易斯安那州的劳动力计划进行扩展。
2、3、4、5 学生,机械工程系,SNS 工程学院,印度泰米尔纳德邦哥印拜陀。摘要:我们在此介绍电动螺旋千斤顶。某些类型的工作需要将车辆举升。这无法手动完成。为了避免此类问题,发明了千斤顶。为了使工作比螺旋千斤顶更轻松,我们引入了一个称为电动螺旋千斤顶的新概念。我们可以使用移动应用程序轻松地将车辆举升和放下。整个组件由 IOT 应用程序制作器上制作的应用程序控制,该项目的大脑是 NODEMCU,它通过 WIFI 模块接收来自应用程序的信号来控制所有电机,NODEMCU 存储由 NODEMCU 编码器编码的代码。关键词:NodeMCU、螺旋千斤顶、电动螺旋千斤顶、Android 应用程序
Jamsheer K. 博士于 2017 年获得新德里国家植物基因组研究所的博士学位,研究领域为植物细胞信号传导和发育。他曾在法国斯特拉斯堡植物分子生物学研究所担任 EMBO 短期研究员,并在新德里国家植物基因组研究所担任研究助理,接受博士后培训。他研究植物营养和压力感知机制以及信号通路。2018 年,Jamsheer 博士获得印度政府颁发的著名 DST- INSPIRE 教职奖学金,并加入北方邦阿米蒂大学。他曾获得多项重要的国家和国际奖项、奖学金和旅行补助金,如 2020 年 INSA 青年科学家奖章、EMBO 短期奖学金、EMBO 旅行补助金、NIPGR-最佳论文奖等。Jamsheer 博士的主要研究重点是了解真核生物营养和应激途径所涉及的基本细胞信号传导机制。这些信息将用于使用基因组编辑和传统基因工程工具对单细胞真核生物和高等植物进行工程改造,使其具有理想的性状。
蒂亚加拉贾尔工程学院 (TCE) 是一所政府资助的自治机构,由慈善家已故卡鲁穆图·蒂亚加拉贾·切蒂亚尔于 1957 年创立。TCE 隶属于钦奈安娜大学,并获得全印度技术教育委员会 (AICTE) 的批准。TCE 提供各种本科、研究生和博士学位。涵盖工程、建筑和科学等各个学科。校园坐落在宁静而环保的环境中,周围环绕着茂密的植被和最好的基础设施。TCE 一直在教学过程中进行改革和升级。值得注意的举措包括实施基于能力的课程和基于成果的教育。自 2018 年以来,TCE 采用了构思、设计、实施和操作 (CDIO) 框架,塑造了课程设计、教学方法和评估技术,并为学生提供足够的实践培训。该机构还于 2021 年推出了几门大规模开放在线课程 (MOOC)。该学院还与全球领先的组织保持着积极的行业合作。这些合作促成了最先进的实验室、面向行业的课程设计、合作项目、专业培训计划、学生实习和安置的建立。TCE 积极参与赞助研究项目,以推动创新和开发实用技术。该机构已成功从各种政府和私人渠道获得大量资金来支持其研究计划。TCE 已获得 AICTE、DST、DRDO 和 UGC 等机构的资助,从而支持开发先进的研究设施、学生项目和专门的培训计划。该机构为博士研究学者推出了 Thiagarajar 研究奖学金 (TRF) 计划,进一步致力于学术卓越和研究创新。该机构提供的课程获得了无数赞誉,包括获得 NAAC 认证,CGPA 为 3.56(满分 4.0),第 2 周期成绩为 A++。
SAMHSA 工作人员出席:Cara Alexander、Paige Alitz、Matthew Aumen、David Awadalla、Aida Balsano、Lauren Barnes、Jacqueline Beale、Jessica Bell、Torrance Brown、Jeanne Casey、Sonia Chessen、Matthew Clune、Tom Coderre、Kawana Cohen-Hopkins、Shawn Cook、Jon Dunbar Cooper、Lisa Davis、Miriam Delphin-Rittmon、Kabaye Diriba、Ingrid多纳托、朱迪思·埃利斯、法比安·埃鲁玛、考特尼·埃斯帕扎、罗恩·弗莱格尔、根尼西·加西亚、吉尔伯特·甘德、梅赫雷特·吉尔梅、考特尼·格洛弗、约瑟夫·格雷、坎迪斯·格里芬、克拉克·哈根、尚特尔·哈特曼、阿林·哈奇、安德鲁·赫林、蔡斯·霍勒曼、约书亚·亨特、维蒂尼娅·约翰逊、伊丽莎·琼斯、劳里·琼斯、安德里亚·卡马戈、克里斯蒂·兰姆、劳拉拉莫特、米歇尔·莱夫、贾瓦娜·洛维特、妮可·卢西亚尼、莱利·林奇、阿玛拉·马特洛克、希瑟·麦克唐纳-斯塔尔纳克、玛吉·麦金尼斯、莉亚·梅希亚、内莉亚·纳达尔、克里斯托弗·奥康奈尔、玛丽安·皮尔斯、莎拉·波特、黛比·里奇、奥纳杰·萨利姆、埃琳·塞帕拉、海登·沈、埃里克·什罗普郡、雷切尔·史密斯、卢克丽霞·斯图尔特、德文·斯威特、劳伦·汤普森、道格·蒂珀曼、布鲁克·崔南、罗伯特·文森特、弗雷德·沃尔普、香农·冯德拉斯、蒂亚·沃克、亚历山大·华盛顿、布伦特·沃茨、贾希·威尔逊、卡梅伦·沃尔夫。
杰罗姆·哈贾吉,1 扬·阮,2 达利拉·穆卢杰,1 里姆·布尔吉巴,3,4 马尔·海布利希,5 哈西娜·阿洛伊,3 克洛伊·麦卡沃伊,1 瓦伦丁·拉孔布,6 塞缪尔·阿尔杜瓦,7 科拉多·坎波奇亚罗,8 亚历山大·玛丽亚,9 西里尔·库斯塔尔,9 蒂博·科蒙特,10 埃斯蒂巴利斯·拉扎罗,11 弗朗索瓦·利弗曼,12 纪尧姆·勒格诺,13 埃尔韦·洛布,13 文森特·格罗博斯特,13 罗德劳·奥特,14 朱利安·坎帕涅,15 阿奈·多尔-艾蒂安,15 爱丽丝·加尼埃,16 伊万·贾米卢, 17 安托万·多西尔, 18 马克西姆·萨姆森, 19 西尔万·奥迪亚, 19 芭芭拉·尼古拉斯, 19 亚历克西斯·马西安, 20 巴蒂斯特·德·马勒普拉德, 21 本杰明·德·圣玛丽, 22 本努瓦·福歇, 22 让·大卫·布阿齐兹, 23 乔纳森·布罗纳, 24 西里尔·杜曼, 24 卡罗尔·安托万, 25 本杰明·卡彭蒂尔, 26 布里斯·卡斯特尔, 27 塞琳·拉蒂戈-鲁辛, 28 艾蒂安·克里克, 29 乔弗罗伊·沃勒, 29 达米安·法亚尔, 30 保罗·德克尔, 31 托马斯·穆利内, 31 阿纳埃尔·杜蒙特, 32 亚历山大Nguyen、32 Achille Aouba、32 Jean-Philippe Martellosio、33 Matthieu Levavasseur、34 Sebastien Puigrenier、35 Pascale Antoine、35 Jean-Thomas Giraud、36 Olivier Hermine、37 Carole Lacout、6 Nihal Martis、38 Jean-Denis Karam、39 Francois Chasset、40 Laurent Arnaud、41 Paola Marianetti、42 Christophe Deligny、43 Thibaud Chazal、44 Pascal Woaye-Hune、45 Murielle Roux-Sauvat、46 Aurore Meyer、47 Pierre Sujobert、48 Pierre Hirsch、49 Noemie Abisror、1 Pierre Fenaux、50 Olivier Kosmider, 51 Vincent Jachiet, 1 Olivier Fain, 1 Benjamin Terrier, 52 Arsène Mekinian, 1 Sophie Georgin-Lavialle, 3 FRENVEX
摘要微生物 - 微生物相互作用如何决定蚊子中的微生物复杂性。以前,我们发现,Serratia是一种改变载体能力并被视为媒介控制的肠道共生体,在相同条件下饲养的Culex quinquefasciatus中繁殖的埃及埃及埃及埃及。研究Serratia和Ae之间的不相容性。aegypti,我们表征了两种来自CX的serratia marcescens菌株。Quinquefasciatus并检查了他们感染AE的能力。埃及。两种Serratia菌株都感染了AE。aegypti,但是当微生物组的稳态破坏时,塞拉蒂亚的流行率和滴度与其本地宿主中的感染相似。检查多种遗传多样的AE。埃及线发现微生物干扰对马可氏链球菌很普遍,但是,AE的一条线。埃及很容易感染。对抗性和易感线的微生物组分析表明,肠杆菌科细菌与塞拉蒂亚之间存在逆相关性,以及在gnotobirotic系统中的实验共感染概括了干扰表型。此外,我们观察到对宿主行为的影响。暴露于AE的锯齿状。埃及破坏了他们的喂养行为,这种表型也依赖于与天然微生物群的相互作用。我们的工作强调了宿主的复杂性 - 微生物相互作用,并提供了微生物相互作用影响蚊子行为的证据。
桑蒂 BESS 项目(桑蒂变电站)- 第二封施工通知信 2024 年 7 月 30 日 我们正在跟进之前于 2024 年 1 月 18 日邮寄给您的通知信,以通知您圣地亚哥天然气电力公司 (SDG&E®) 或其承包商将在您所在的地区开展桑蒂电池储能系统 (BESS) 项目。随着工作人员开始动员并开始主要施工和安装工作,您会看到项目现场的活动增加。 桑蒂 BESS 项目(桑蒂变电站)更新详情*: 预计时间表:持续到大约 2025 年第一季度。 位置:位于 SDG&E 的桑蒂变电站地产,位于加利福尼亚州桑蒂市 Magnolia 大道附近 Mast 大道旁。 工作日和时间:周一至周六,上午 7:00 至晚上 7:00;可能会延长工作时间。 无服务中断:您的服务应继续不间断。 *注意:施工日期和时间可能会根据合规要求、恶劣天气和其他不可预见的情况而发生变化。施工时间、交通管制措施和噪音限制由当地司法管辖区制定。桑蒂 BESS 项目是一个 10MW 电池,将增强全州电网,为圣地亚哥地区带来全系统效益。该项目是 SDG&E 对可持续发展的承诺的一部分,旨在通过整合越来越多的能源存储项目来提供安全、清洁和可靠的能源,以帮助最大限度地利用太阳能和风能产生的可再生电力并支持电网可靠性。SDG&E 将尽可能减少施工活动的影响。施工活动可能会增加噪音和灰尘干扰。对于您在施工期间可能遇到的任何不便,我们深表歉意,我们感谢社区在我们努力完成这一重要项目期间的持续耐心和支持。这封信不需要您采取任何行动。如果您在施工期间有任何问题或疑虑,请致电 (844) 210-5821 或发送电子邮件至 JQuijano@sdge.com 与我联系。诚挚的,