吉姆(Jim)获得了宾夕法尼亚州立大学的商业管理学士学位,并获得了凯斯西部储备大学(Case Western Reserve University)的工商管理硕士学位。在业余时间,吉姆(Jim)是一位狂热的雪体运动爱好者,小联盟棒球教练,喜欢与妻子和两个孩子共度时光。
1(2016 年综合能源计划第 359 页 https://outside.vermont.gov/sov/webservices/Shared%20Documents/2016CEP_Final.pdf)
作为一支相对较新的团队(我们开始努力参加2022年的首次大学风能比赛),在我们的第一个比赛CWC23之后,我们只有9名承诺的成员,为此我们作为一支学习的团队参加了比赛。此外,我们所有的成员都是工程专业的学生,我们只参加了一支学习团队的涡轮机测试比赛。我们认识到,要成为一支真正全面的团队,我们将需要更多的团队成员和更大的专业和兴趣多样性。这将使我们能够开始参加比赛的项目开发和连接创建团队参加2024年比赛。因此,我们设定了一个目标,以尽可能多地增加我们的承诺成员人数,而不会导致团队太大而无法正常运行 - 这是我们确保随着时间的推移监视的。
抽象背景和目的:为了提高对炎症性肠道疾病[IBD]病理生理的理解,我们比较了新发育小儿IBD患者与症状性非IBD对照中的粘膜和血浆代谢组,以及相关的等离子体炎症标记和疾病特征与改变的代理。方法:来自67名未经治疗的儿童患有Crohn病的儿童成对的结肠和回肠活检和血浆[CD; n = 47],溃疡性结肠炎[UC; n = 9],并使用超表现液相色谱 - 质谱法[UPLC-MS/ MS]分析了非IBD对照[n = 11]。评估炎性血浆蛋白[n = 92]。 结果:IBD患者和对照组之间发炎的粘膜活检中的代谢组有所不同。 在CD中,几种溶物磷脂的粘膜水平[溶血磷脂酰胆碱,溶物磷脂酰脊髓胺,溶血磷脂酰肌醇和溶物磷脂酰甲酯酶]降低,与包括各种质量代谢物的氨基化代谢物和N -N -N -N -N--核酸盐和n -N -aceconsylsylsylsynylsylsyclsylsycysyclsys降低。 在CD和UC中,粘膜鞘脂,包括神经酰胺[D18:2/24:1,D18:1/24:2],乳糖基-N- palmitoyl-sphindosine [D18:1/16:0] [D18:1/24:0]和/或鞘磷脂[D18:1/24:1,D18:2/24:0]增加,与等离子中的鞘脂,胆汁酸,胆汁酸,胆汁酸和/或N-乙酰化的代谢物相关。 与CD相关的蛋白质之间,白介素-24与血浆代谢产物相关,包括乳糖基-N--戊酰鞘氨酰鞘氨醇[D18:1/16:0]和磷脂酰甲醇胺[18:1/18:1],血红蛋白和氟贝蛋白和氟蛋白calprotectin。 关键词:炎症性肠病;小儿代谢组炎性血浆蛋白[n = 92]。结果:IBD患者和对照组之间发炎的粘膜活检中的代谢组有所不同。在CD中,几种溶物磷脂的粘膜水平[溶血磷脂酰胆碱,溶物磷脂酰脊髓胺,溶血磷脂酰肌醇和溶物磷脂酰甲酯酶]降低,与包括各种质量代谢物的氨基化代谢物和N -N -N -N -N--核酸盐和n -N -aceconsylsylsylsynylsylsyclsylsycysyclsys降低。在CD和UC中,粘膜鞘脂,包括神经酰胺[D18:2/24:1,D18:1/24:2],乳糖基-N- palmitoyl-sphindosine [D18:1/16:0] [D18:1/24:0]和/或鞘磷脂[D18:1/24:1,D18:2/24:0]增加,与等离子中的鞘脂,胆汁酸,胆汁酸,胆汁酸和/或N-乙酰化的代谢物相关。与CD相关的蛋白质之间,白介素-24与血浆代谢产物相关,包括乳糖基-N--戊酰鞘氨酰鞘氨醇[D18:1/16:0]和磷脂酰甲醇胺[18:1/18:1],血红蛋白和氟贝蛋白和氟蛋白calprotectin。关键词:炎症性肠病;小儿代谢组在UC,Interleukin-24,介菌17a和C-C基序趋化因子11中与几种血浆代谢物相关,包括N-乙基基质磷酸,色氨酸,甘油酸,甘油酸和threonate,以及儿科溃疡性溃疡性溃疡性蛋白质蛋白质,蛋白质和Faecincin和Faecin。结论:溶血磷脂和鞘脂的粘膜扰动表征了新的儿科IBD中的代谢组,并与血浆代谢物相关。通过将血浆代谢组学数据与炎症蛋白和临床数据相结合,我们确定了与IBD代谢组学特征相关的临床和炎症标志物。
1。Philibert,C。可再生能源交叉边界:Ammonia等。在NH3事件中。2017。鹿特丹。2。Millar,R。等人,累积碳预算及其含义。牛津经济政策评论,2016年。32(2):p。 323-342。3。Aika,K.,Takano,T。&Murata,S。无氯氟丁氏催化剂的制备和表征以及氨合成中的启动子效应:3。镁支持的钌催化剂。J. Catal。 1992。 136,126–140。 4。 Kitano,M。等。 使用稳定电气作为电子供体和可逆氢存储的氨合成。 自然化学。 2012。 4,934–940。 5。 Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。J. Catal。1992。136,126–140。4。Kitano,M。等。 使用稳定电气作为电子供体和可逆氢存储的氨合成。 自然化学。 2012。 4,934–940。 5。 Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。Kitano,M。等。使用稳定电气作为电子供体和可逆氢存储的氨合成。自然化学。2012。4,934–940。5。Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。Sato K.等。在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。化学。SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。SCI。2017。8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。8,674–679。6。Kyriakou V,Garagounis I,Vasileiou E等。氨的电化学合成的进展。CATAL今天2017年。286,2-13。7。ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。法拉第讨论2016年。190,307–326。8。Bañares-Alcántara,R。等,对基于氨的储能系统的分析。2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。2015,牛津大学:英国牛津大学。p。 158。2017。10。9 Philibert,C。生产氨和肥料:可再生能源的新机会。Olson,N。“ NH3-世界上最佳能源解决方案”,在2017年NH3活动,鹿特丹,2017年5月18日至19日。Olson,N。“ NH3-世界上最佳能源解决方案”,在2017年NH3活动,鹿特丹,2017年5月18日至19日。
Uniper和Greenko Zeroc Private Limited,Greenko Group的绿色分子生产部门,今天宣布签署一份理解备忘录(MOU)和Uniper的术语负责人,以便Uniper进行独家谈判,以征求Greenko Zeroc Zeroc Zeroc immonia Production in kakakindada的Greenko Zermmonia of Green Ammonia的独家谈判。在谅解备忘录,格林科和Uniper的领导下,打算根据供应和购买协议的第一个创新定价,供应和任期结构,以根据条款的负责人每年为250,000吨的绿色氨(GASPA)谈判。Greenko的Kakinada项目是一种多相绿色氨的生产和出口设施,到2027年,绿色氨的生产能力高达1 MTPA。Greenko在Kakinada的设施的第一阶段是基于由2.5 GW的2.5 GW可再生资产在印度生产的电力(RTC)可再生电力的电解器,并由其Pinnapuram集成的可再生能源存储工厂(IRESP)加强。谅解备忘录是在班加罗尔的2023年印度能源周的印度能源周期的联盟和天然气工会部长Hardeep Singh Puri先生在场的。niek den Hollander,Uniper的CCO:“脱碳是我们这个时代的主要挑战之一,需要快速行动 - 因此,Uniper很乐意为与我们的合作伙伴Greenko一起加速能源过渡。Greenko Kakinada项目是一个非常有前途的机会,可以为德国提供绿色氨和确保低碳氢产品的供应。我们期待与格林科(Greenko)进行这项交易”我们对合作感到非常兴奋!”设定该项目的关键区别是泵储存厂的整合,以平衡可再生生产的间歇性和季节性,并实现高达85%以上的高年度植物负载系数,从而使绿色氨的灵活且可派遣的绿色氨竞争性供应。除了绿色氨外,Uniper和Greenko还打算合作将类似的柔性可再生电力部署到其他氢产品(例如E-甲醇和可持续航空燃料)上。Greenko首席执行官兼董事总经理首席执行官(首席执行官)Anil Chalmalasetty:“格林科正在为低碳经济提供脱碳解决方案。我们正在与约翰·科克里尔(John Cockerill)的世界一流技术合作伙伴合作,并将在印度共同开发大型绿色分子项目。,我们非常高兴通过为我们的项目提供这项选择协议与Uniper合作,该协议最终将取代液化天然气进口并加强印度的绿色分子野心,这是一项更广泛的可再生能源计划的一部分,该计划将使印度运行世界上最大的能源过渡计划。” Uniper中东首席执行官John Roper:“格林科一直是该地区绿色分子市场上最敏捷的球员之一。与Uniper作为绿色氨合作伙伴的Offtake合作伙伴,该合作伙伴关系将受益于通过Uniper的全球商品交易和物流网络添加的额外值。
该计划由中西部危险废物工人培训联盟开发,该联盟由来自九个州的培训师组成,致力于提供互动式培训以满足工人的需求。该联盟获得联邦政府(国家环境健康科学研究所,简称 NIEHS)的资助,以开发和提供“模型”培训计划。政府的意思是,我们有一定数量的教员,包括实践活动,以及通过您的反馈记录培训对参与者的价值的方法。此外,我们需要为参与者定义“成功完成”。该计划包括多种措施的组合以实现成功完成:知识测试、带有检查表的练习和所有课程的出勤率。前测和后测用于衡量课程期间的知识获得。检查表用于在练习期间记录技能熟练程度。要求您每天签到以记录出勤情况。
• 技术:国内电解器制造的生产挂钩激励 (PLI) • 生产:绿色氢气生产的 PLI • 便利:开放获取和连通性的时限补助 • 金融:以美元计价的 GH/GA 投标,以及通过绿色债券融资 • 基础设施:支持建设 GH 及其衍生品,如港口基础设施、管道,用于储存和交付。到 2025 年,至少一个港口将建立绿色氨燃料库和加油设施。 • 质量:政府将指定型号和制造商的核准清单 (ALMM)
甲氨蝶呤是一种叶酸拮抗剂。2 四氢叶酸是叶酸的活性形式,是嘌呤和胸苷酸合成所必需的。叶酸被二氢叶酸还原酶 (DHFR) 还原为四氢叶酸。甲氨蝶呤的细胞毒性来自三种作用:抑制 DHFR、抑制胸苷酸和改变还原叶酸的转运。3 抑制 DHFR 会导致胸苷酸和嘌呤缺乏,从而导致 DNA 合成、修复和细胞复制减少。3 DHFR 对甲氨蝶呤的亲和力远大于其对叶酸或二氢叶酸的亲和力,因此同时给予大剂量叶酸不会逆转甲氨蝶呤的作用。 2 然而,如果在甲氨蝶呤后不久服用四氢叶酸衍生物亚叶酸钙,则可能会阻断甲氨蝶呤的作用,因为它不需要 DHFR 来激活。2 中等剂量 (> 100 mg/m 2 ) 至高剂量甲氨蝶呤 (> 1000 mg/m 2 )4 加亚叶酸救援通常用于癌症治疗。3 甲氨蝶呤对快速增殖细胞最有效,因为细胞毒作用主要发生在细胞周期的 S 期。3 甲氨蝶呤还具有免疫抑制活性,可能是由于抑制淋巴细胞增殖。5
在 Fritz Haber 的基础研究工作的基础上,Carl Bosch 及其工程团队利用 Alwin Mittasch 及其同事发现的经过改进的铁基催化剂,将氨合成技术发展到了技术可操作性。从那时起,合成反应本身并没有发生根本性的变化。即使在今天,每家工厂的基本配置都与第一家工厂相同。氢氮混合物在 400 – 500 °C 的高温(最初高达 600 °C)下在铁催化剂上发生反应,操作压力高于 100 bar,在除去所形成的氨后,未转化的合成气部分被再循环,并补充新鲜的合成气以补偿转化为氨的氮和氢的量。