摘要:本文讨论了天线、高功率回旋管和低噪声接收机等新型亚太赫兹仪器的最新发展,这些仪器提供了广泛的潜在应用。大气吸收现在已成为此类高性能亚太赫兹系统应用的主要限制因素,而天线的最佳位置选择对于天文、雷达和通信系统至关重要。本文介绍了研究欧亚大陆北部微波天文气候的最新成果。基于这些研究,本文提出了在苏法高原和高加索地区安装新天线的新观点和修正计划,并讨论了基于极高功率回旋管和低噪声超导接收机的新型仪器(如用于定位空间碎片的雷达和用于深空通信的通信枢纽)的可能应用。
摘要:采用固相合成、研磨、压制和烧结工艺制备了含有堇青石、莫来石、SiO 2 玻璃和 SiO 2 -B 2 O 3 -Al 2 O 3 - BaO-ZrO 2 玻璃的玻璃陶瓷复合材料。使用加热显微镜、差示热分析、热重法、扫描电子显微镜、能量色散光谱、X 射线衍射分析、阻抗谱、透射法和时域光谱 (TDS) 检查了 Hz-MHz、GHz 和 THz 范围内的热行为、微观结构、成分和介电性能。获得的基板表现出 4.0-4.8 的低介电常数。自发形成的封闭孔隙取决于烧结条件,被认为是降低有效介电常数的一个因素。
东赫兹委员会在2019年7月发表了气候变化声明,以表彰我们所有人面临的气候紧急情况。该声明承诺理事会采取行动以解决整个地区气候变化的原因和影响,到2030年,目标是碳中性的。在2023年7月,所有议员都一致宣布气候紧急情况,进一步加强了这一立场。应对气候变化并专注于改善可持续性的环境必须是所有采购活动的关键基础。通过利用我们的购买力,我们将:帮助应对气候变化并减少碳排放;减少浪费;节省资源;提高空气质量;并增强绿色空间并促进生物多样性。认为东赫兹委员会只能解决气候变化,显然很幼稚。单方面和通过国际合作,国家政府有很多事情要做。此外,我们在由赫特福德郡县议会(HCC),东赫兹委员会和城镇和教区议会组成的地方政府的三层模型中运作。都可以扮演角色。有可能使每个人都可以减少碳排放,包括供应链。
在充满挑战的跨国环境中开展研究,为您提供绝佳的职业发展机会。您将有机会在尖端技术领域树立国际声誉。通过提供灵活的工作时间和异地工作的可能性,支持个人职业发展(例如会议、高级培训)以及满足员工的个人需求对我们来说非常重要。我们高度重视工作与家庭的兼容性。有关我们的科学卓越性和 IHP 工作环境的更多信息,请访问我们的网站。IHP 已通过 TOTAL E-QUALITY 认证,为男女提供平等的工作机会,并积极追求所有性别和所有群体的平等。我们促进女性的职业发展,并强烈鼓励她们申请。符合上述标准的残疾申请人将优先于具有同等相关资格的其他候选人。
2024-04-10 IHP 的新型功率放大器增强了未来超 5G 技术的信号传输 德国法兰克福(奥得河畔)。在 IHP - 莱布尼茨高性能微电子研究所,由 Mohamed Hussein Eissa 博士领导的研究人员成功开发出一种新型硅基功率放大器,推动了超 5G 技术的发展。这是通过采用 IHP 最新的 SG13G3 技术实现的,展示了其进一步开发新型前沿硅基亚太赫兹集成电路的潜力。研究结果发表在 IEEE 微波和无线元件快报上,研究由德国联邦教育和研究部 (BMBF) 资助。该出版物获得了 2024 年 Tatsuo Itoh 论文奖,成为该出版物中发表的文章中贡献最大的论文。技术卓越性、贡献意义和展示效果都会受到评判。功率放大器对于增强传输信号的信号强度是必不可少的。电信号经过几个级联放大器级,然后才到达集成电路的输出端或发射系统的天线。由于通信和雷达技术的需求快速增长,我们这个互联世界对此类集成电路的需求很高。“与 200 GHz 以上的最先进硅基放大器相比,这种功率放大器的带宽提高了两倍,效率提高了 1.5 倍,”首席科学家 Dr.-Ing. Mohamed Hussein Eissa 解释道。自 2014 年 10 月以来,他一直在德国法兰克福(奥得河畔)莱布尼茨高性能微电子研究所 (IHP) 工作,担任研究科学家,后来担任电路设计部毫米波和太赫兹传感器组负责人。IHP 开发的先进功率放大器的其他新兴应用领域是用于安全应用的亚太赫兹成像系统或联合通信和传感系统,这些系统将与即将到来的 6G 标准相关。在这里,发射的无线电信号用于通信,同时也用于定位物体,补充了传统的雷达方法。这项研究是在增加亚太赫兹频率硅技术的利用率的背景下进行的,亚太赫兹频率的频谱在 100 到 1000 GHz 之间。
CAT SR4B 发电机外形尺寸。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。824 激励。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。永磁体节距。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.....0.6667 极数 ......................................4 轴承数量。.。。。。。。。。。。。。。。。。。。。。。。。。.............1 引线数量 ............。。。。。。。。。。。。。。。。。。。。.........6 绝缘 ..........UL 1446 认可的 H 级绝缘 IP 等级。.。。。。。。。。。。。。。。。。。。。。。。。。..........防滴 IP22 对准。...........。。。。。。。。。。。。。。。。。。。。。。。。..导向轴超速能力 ..............。。。。。。。。。。。。。。。。125% 波形。。。。。。。。...... div>............偏差小于 5% 并联套件压降变压器 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 标准电压调节器。 。 。 。 。 。 。 。 。 。 。 三相感应,可调 1:1 或 2:1 伏特/赫兹,UL 508A 列出的 TIF 。 . . < div> 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 < /div> . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。偏差小于 5% 并联套件压降变压器 。.....。。。。。。。。。。。。。标准电压调节器。。。。。。。。。。。三相感应,可调 1:1 或 2:1 伏特/赫兹,UL 508A 列出的 TIF 。..< div> 。。。。。。。。。。。。。。。 < /div>.....。。。。。。。。。。。。。。。。。。。。。。小于 50 THD。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。小于 3%
在无线通信方面,微波技术通过长期发展和大量投资,目前已形成强劲势头,并已成功满足目前正在部署的 5G 基础设施初始阶段的要求。然而,包括毫米波 (mmWave) 在内的微波解决方案在支持未来应用的更高带宽方面已达到物理上限。因此,太赫兹 (THz) 波段和中红外波段等更高频段涵盖了更宽的电磁频谱范围,有望成为突破此类限制的候选技术。[1,2] 目前已进行多项太赫兹波段高数据速率传输实验,其中许多实验借助了光子技术。[3 – 5] 另一方面,随着载波频率的提高和带宽的扩大,这些无线系统正在采用一种新模式,即信号以高增益导波的形式发射
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]