国际能源署继续加强与中国在能源效率和需求侧灵活性方面的合作。我们向国家发改委资源节约和环境保护司提供了公共建筑节能和热泵部署方面的政策建议。此次对话促成了国际能源署执行干事法提赫·比罗尔和国家发改委副主任赵晨欣在 2023 年国际能源署第八届全球能源效率年会上签署了一份新的为期四年的谅解备忘录。国际能源署还通过详细分析中国的建筑规范、与中国科学院就电网互动式高效建筑以及加速热泵部署的方法进行交流,重点关注建筑领域。国际能源署还与中国节能经济促进会密切合作,编写了《能源效率 2023》报告的完整中文翻译版。
关于发明人资格问题,中期报告指出,一般认为,一个人要想成为“发明人”(或共同发明人),必须对发明中独特的部分(即,在现有技术中不存在的部分,并且是解决该发明所特有问题的手段的基础)的完成做出创造性贡献。中期报告还指出,单纯的管理者、助手或赞助人不被视为发明人,法院判决也采用了类似的标准来确定“发明人”的身份(第 84 页)。中期报告还指出,根据日本《专利法》的相关规定,只有自然人才能成为“发明人”(第 84-85 页)3。鉴于这些考虑,中期报告指出,当人工智能用于协助完成一项发明时,“根据传统观点,发明人是对发明的独特部分完成作出创造性贡献的人,发明人应该是相关自然人。”(第 85 页)。
肺癌仍然是美国第二大确诊癌症(美国癌症协会,2024 年)。随着肿瘤学治疗方式的快速发展,肿瘤科护士导航员 (ONN) 必须及时了解这些方式、测试和指南,以便为患者提供循证护理协调和教育。患者了解各种测试背后的理由和期望,以及它们如何有助于决定最佳治疗方法,是 ONN 的重点(肿瘤护理协会,nd,2017 年)。接受全面检查的患者面临的障碍可能包括缺乏前往多个预约的交通工具、共同支付或测试费用的财务障碍、保险覆盖障碍、焦虑、缺乏支持或其他健康社会决定因素 (SDOH)。 ONN 可以评估并提供主动资源来解决障碍,消除临床检查的额外延误或障碍(肿瘤护理协会,nd,2017)。
据悉,国家医保局共收到501份申请,涉及474个药品,271个药品通过了初审。国家医保局网站公布了这271个药品的分类,披露了通用名、上市许可持有人名称、适应症、是否存在专利纠纷、使用剂量、有效性和安全性描述等信息。然而,2021年11月初的谈判中,只有117个药品被纳入。复星凯特的CAR-T产品Yescarta(axicabtagene ciloleucel)每针约120万元,虽然被纳入了候选名单,但并未进入谈判。相比之下,百健的Spinraza(通用名:nusinersen)治疗罕见病脊髓性肌萎缩症(SMA),单针约70万元,尽管过去曾失败,但最终被纳入2021年国家医保目录。
日本千雪大学,(OMC)成员hitoki yoneda electro-communications(ALPS)Osamu Matoba Kobe大学(BISC,SI-THRU)Yasuhiro Awatsuji Kyoto技术研究所(BISC)大阪大学(HEDS)的激光工程OPTM)Yukitoshi Otani Utsunomiya大学(OPTM)Tomoyuki Miyamoto Tokyo Tokyo技术学院(OWPT)Kayo Ogawa Japan Japan Japan Wemen的Wemen的大学(OWPT)Takunori Taira Taira Riken(Tila-lic)石川理化学研究所 (XOPT) 山内一人 大阪大学 (XOPT) 近藤信之 OPI 理事会、日本激光株式会社会长 武田光男 OPI 理事会、宇都宫大学 OPI 理事会 绿川胜美 OPI 理事会、日本理化学研究所先进光子学中心主任 上田健一 电气通信大学名誉教授
1。马疱疹病毒-1(EHV-1)技术疫苗等级Equiherpabort疫苗preamble preamble preamble已开发出来用于控制马中疱疹病毒-1感染的疫苗。这种疫苗是使用马疱疹病毒1的田间应变开发的。由于这种病毒而引起的感染会导致流产,死产和小马驹死亡率,呼吸和神经系统疾病。EHV-1负责对马产业的严重经济损失。该疾病主要通过气溶胶,受污染的食物,水,床上用品和其他Fomites传播。健康马主要通过呼吸道获取感染。在印度埃氏菌对EHV-1感染的全国评估中,发现血清阳性13.5%。杀死的疫苗进行免疫预防。几年来,印度马匹育种者对马的疫苗接种了针对EHV-1感染的疫苗接种,该疫苗已通过掺入EHV-1杀死的病毒而在商业上产生的疫苗进行了数年。该疫苗将作为控制该疾病的替代方法。
日本千雪大学(OMC)成员hitoki yoneda电气通讯大学(ALPS)OSAMU MATOBA KOBE大学(BISC,SI-THRU)Yasuhiro Awatsuji Kyoto技术研究所(BISC)大阪大学(HEDS)ASER工程学,大阪大学(HEDS)Yasuhiko Arakawa Tokyo University of Tokyo(ICNNQ)Toshihiko Shimizu Shimizu Shimizu Shimizu Osaka University(LSC) Omiya大学(OPTM)Tomoyuki Miyamoto科学学院东京(OWPT)KAYO OGAWA JAPAN JAPAN WEMEN的WEMENS(OWPT)TAKUNORI TAIRA RIKEN(TILA-LIC)TETSUYA ISHIKAWA RIKEN(XOPT)山内 大阪大学 (XOPT) 近藤 伸之 OPI 理事会、日本激光株式会社会长 武田 光男 宇都宫大学 OPI 理事会 绿川 胜美 OPI 理事会、日本理化学研究所先进光子学中心主任 上田 健一 电气通信大学名誉教授
在人工智能发展史上,2016年被普遍视为具有里程碑意义的一年,人工智能项目数量大幅增加(赵建军、袁志强,2016)。这一年,DeepMind 的 AlphaGo 战胜了围棋冠军李世石,成为首个战胜职业围棋选手的计算机围棋系统。这场人机大战的结果引起了全球的广泛关注,为人工智能技术的发展注入了新的动力。在各国人工智能战略和资本涌入的推动下,人工智能技术的应用领域得到了极大的拓展,教育是受影响最为显著的领域之一。2017全球(上海)人工智能创新峰会呼吁进一步探索人工智能与教育的融合。在过去几年大数据、互联网、云计算等技术的快速发展中,人工智能在中国教育改革中发挥了至关重要的推动作用(张建军、顾志强,2023)。
生长还是不生长是植物在面临盐胁迫时经过复杂评估后做出的简单决策。由于气候变化,我们的可耕地越来越少,传统农业可用的淡水资源也越来越少,因此了解植物在盐胁迫下如何做出这一决定至关重要。数十年来的研究一致认为,耐盐性是一种复杂的性状,涉及转录和生理反应的协调反应。我们主要使用拟南芥,已经揭示了一些控制盐胁迫反应的关键方面。现在,我们站在新的前沿,以自然适应胁迫的植物为主要研究目标,扩大我们的知识库,利用新的分子工具和资源,以前所未有的水平了解盐胁迫适应性。在这篇评论中,我们重点介绍了赵等人描述的主要机制。 1 是《创新》第一期关于植物盐胁迫反应的文章,涉及新的突破性研究和培育耐盐作物的新兴前沿,以满足不断变化的世界的需求。
技术程序委员会: 张超 国防科技国家创新研究院 陈厚桐 美国洛斯阿拉莫斯国家实验室 范文辉 中国科学院西安光学精密机械研究所 韩家光 桂林电子科技大学 胡敏 电子科技大学 胡明烈 天津大学 金标斌 南京大学 Olga G. Kosareva 莫斯科国立大学 刘伟 南开大学 谷昌彦 日本福井大学 彭小雨 中国科学院重庆绿色智能技术研究院 Emma Pickwell-Macpherson 英国华威大学 石伟 西安理工大学 东之内昌义 日本大阪大学 王天武 中国科学院空天信息研究院 吴小军 北京航空航天大学 徐德刚 天津大学 张东文 国防科技大学 张岩 首都师范大学 张亚欣 电子科技大学 赵增秀 国防科技大学 郭立朱一明,中国工程物理研究院 朱一明,上海理工大学