o Ni % o Ti % o 元素 3 % o 元素 4 % o 热处理 1 次 o 热处理 1 温度 o 热处理 2 次 o 热处理 2 温度 o 热处理 3 次 o 热处理 3 温度 o 较低循环温度 o 较高循环温度 o 奥氏体起始温度 o 奥氏体结束温度 o 马氏体起始温度 o 马氏体结束温度
本研究调查了升温速率和充电状态 (SoC) 对软包锂离子电池热失控的影响。热失控是锂离子电池的一个关键安全问题,会导致灾难性的故障和潜在的危害。通过系统地改变升温速率和 SoC 水平,我们分析了热失控事件的起始温度、反应动力学和严重程度。我们的研究结果表明,较高的升温速率会加速热失控的发生,缩短反应时间并增加热事件的严重程度。此外,由于储能增加和电解质分解,SoC 水平较高的电池表现出较低的起始温度和更剧烈的热失控反应。这些结果强调了控制升温速率和 SoC 对提高锂离子电池系统安全性和稳定性的重要性。这为开发更安全的电池管理系统和热安全协议提供了宝贵的见解。
TR 是电池系统最危险的安全隐患。TR 始于电池产生过多的热量,而这些热量无法充分消散,从而导致电极和电解质材料发生一系列放热反应。4 这些反应会产生气体,从而给电池加压。高温和高压共同作用,经常会导致电池外壳爆裂,5 导致热固体、熔融金属、蒸汽和剧毒气体剧烈喷出。6,7 此外,可燃喷出物(如 H 2 气体和蒸发的有机物)可能着火,从而加剧能量释放。8,9 电池化学成分、9 材料数量、充电状态 (SOC) 10 和老化历史 11 在很大程度上决定了 TR 期间释放的能量和材料。因此,虽然更高容量的化学成分和更高的电池电压会增加电池组的能量密度,但它们也会降低 TR 起始温度,从而增加能量释放。 6,8,9,12 挤压、穿透和外部短路都可能引发 TR,13-17 通常会导致多个电池同时进入 TR。此类事件非常复杂,难以缓解,通常需要有关电池环境的信息(例如,电池在电动汽车内的位置)才能设计出足够的安全措施。另一方面,单电池 TR 可以在电池组级别进行管理。
摘要:热交换器是一种用于在两种或多种不同温度、热接触的流体之间传递热能的装置。热交换器广泛应用于不同类型的工业和家庭应用。两种起始温度不同的流体流过热交换器。一种流体流过管(管侧),另一种流体流过管外但在壳体内(壳侧)。挡板放置在壳侧空间,提供壳侧流体的横向流动方向,因此可以实现流体之间更密集的热交换。此外,管束带有挡板,这有助于减少设备的偏转和振动。在目前的研究中,对包含不同方向的扇形挡板的单程、横向流壳管式热交换器进行了实验,以计算一些参数,例如传热速率和压降。壳管式热交换器的设计包括机械设计和热设计。机械设计包括主壳体在内外压降下的设计、管道设计、挡板设计等。热设计包括评估所需的有效表面积、管道数量以及找出对数平均温差。使用有效性 NTU 方法开发了热模型。关键词:管道设计、挡板、压降、对数平均温差、NTU 方法、改变直径、实验、热效率。
摘要 — 本文探讨了防火复合材料的开发,重点关注其在电气系统中的应用。加入阻燃填料的目的是在不损害对功能至关重要的机械和电气性能的情况下提高防火安全性。这项研究首先概述了传统复合材料在确保防火安全方面所面临的挑战,特别是在火灾风险可能造成严重后果的电气环境中。遵守严格的标准和法规需要材料能够承受高温,同时最大限度地减少火焰蔓延和烟雾产生,从而保护设备和人员。为了应对这些挑战,这项研究调查了将阻燃填料整合到复合材料基质中。研究了三水合氧化铝 (ATH)、氢氧化镁 (MH) 和纳米粘土等材料通过吸热分解、燃料稀释和形成保护性炭层等机制提高防火性的能力,这些机制可以延迟点火并减少火焰蔓延。实验程序包括制备具有不同填料浓度和聚合物基质的复合样品,然后进行热分析 (TGA、DSC) 以评估热稳定性和燃烧行为。还评估了抗冲击性、弯曲强度和拉伸强度等机械特性,以确保阻燃填料不会损害结构完整性。结果表明,与未填充的聚合物相比,含有阻燃填料的复合材料表现出优异的耐火性。热重分析表明,分解过程中的起始温度更高,质量损失率降低,表明热稳定性得到改善。锥形量热法测试表明总热量和峰值热量散发率降低,表明可燃性降低,防火性能增强。
电场和磁场为无机材料的合成、加工和微观结构调整提供了额外的自由度。[1] 与传统烧结技术相比,电流辅助烧结 (ECAS) 技术因显着增强和加速了烧结动力学而具有极好的前景,在先进材料的加工中非常有前景。[2 – 7] 从 100 多年前的第一项专利开始,如今专利和文献中描述了 50 多种不同 ECAS 技术原理。[3] 通常,可通过以下方式实现高加热速率和低停留时间的短期烧结:1) 在导电工具中间接加热非导电粉末,通过焦耳效应加热并将热量传导给粉末; 2) 通过感应或热辐射间接加热非导电粉末,直至达到起始温度,此时电流开始流过样品,因此可以直接加热;3) 通过焦耳效应直接将能量耗散在样品内,直接加热导电粉末;4) 通过样品突然释放存储在电容器中的能量,超快速直接加热导电粉末。粉末和工具材料的电导率主要决定样品是直接加热还是间接加热。金属、合金和特殊陶瓷材料,如 TiC、TiN、Ti(C,N)、MAX 相(M = 过渡金属,A = A 组元素,X = C 或 N)、WC、TiB2 和 ZrB2,作为超高温陶瓷 (UHTC),可以在场辅助烧结技术/放电等离子烧结 (FAST/SPS) 模式下直接加热,因为它们的电导率比通常用作工具材料的石墨的电导率高几个数量级。反之亦然,大多数氧化物(Al2O3、ZrO2、YSZ、MgO、CeO2、掺杂钆的二氧化铈 [GDC] 等)和其他陶瓷,如 BN、Si3N4、SiC 和 B4C,由于其低电导率,则间接加热。通过施加单轴压力可以进一步提高 ECAS 技术的效率,这还可以支持烧结动力学,从而能够降低烧结温度
加工和储存(指导值) 混合 称量(按重量或体积)Araldite 树脂和硬化剂。 将硬化剂添加到 Araldite 树脂中;确保将所需量的硬化剂转移到树脂中。 充分搅拌直至混合完成。 混合过程中的空气夹带会导致固化树脂中出现孔隙。 在真空下或计量混合机中混合是防止空气夹带的最有效方法。 或者,可以在真空室中对静态树脂 - 硬化剂混合物进行脱气——允许至少 200% 的空隙以使泡沫膨胀。 固化 混合树脂和硬化剂引起的化学反应会产生放热。 达到的峰值温度由起始温度和铸件的大小和形状决定。 未填充的树脂系统仅适用于制造重量不超过约 500 克的铸件。 生产大型铸件时,应添加矿物填料来散热并抑制放热反应。生产非常小的铸件或薄层时,放热反应非常少,因为产生的热量会迅速消散。因此固化会延迟,铸件表面可能仍然发粘。在这种情况下,应使用 40°C – 60°C 的红外加热器或烤箱进行完全固化。铸造厚部件时,需要特别小心,避免放热温度过度上升。除非对按照特定设计制造的铸件进行初步试验,并在指定的模具中不会产生不可接受的放热效应,否则不应使用短时间高温固化程序。要确定交联是否已完成以及最终性能是否最佳,必须对实际物体进行相关测量或测量玻璃化转变温度。客户制造过程中的凝胶和固化周期不同,可能导致交联程度不同,从而导致不同的玻璃化转变温度。储存条件将组件存放在室温干燥处,密封在原装容器中。在这些条件下,保质期将与标签上注明的有效期相对应。在此日期之后,产品只能在重新分析后进行处理。部分空的容器应在使用后立即盖紧。有关废物处理和火灾时分解的危险产物的信息,请参阅这些特定产品的材料安全数据表 (MSDS)。