1。简介一般而言,飞机可以分为两类:固定翼和旋转翼,既有优点和缺点。传统固定翼航空车的空气动力学在[1]中介绍,[2-4]中的传统旋转飞机在[1]中提供。关于物体的空气动力学,它受两个主要力的影响:升降和拖动。升力作用于相对风,并反对另一种称为重量的力。阻力与相对风平行,并反对称为推力的力。固定翼航空车的运行取决于有足够的起飞跑道的可用性,这导致了该地点的关键选择。另一方面,这种平台的飞行范围明显长于旋转翼航空车提供的时间。在[3,4]中,有关影响旋转空中的空气动力学的更详细的研究
4.5.1.2. (新增)跑道等待位置标志(附件 3,图 A3.1)。跑道等待位置标志位于与跑道相交的滑行道上,与跑道等待位置标记相对应,如附件 3,图 A3.2 所示。标志上的跑道编号排列与相应的跑道入口相对应。例如,“33-15”表示 33 号跑道入口在左侧,15 号跑道入口在右侧。在与起飞跑道起点相交的滑行道上,标志上只能显示起飞跑道的标识。例如,“33”表示 33 号跑道的起点。未经空中交通管制部门批准,车辆操作员或行人不得越过这些标志。车辆和/或行人将在标志前停下,并与空中交通管制部门联系,请求允许越过等待标志进入跑道。
在从登机口推回之前,负责监控的副驾驶初始化了飞行管理计算机 (FMC),并错误地输入了错误的起飞跑道(27R 而不是指定的 27L)。当机长滑行到 27L 跑道准备起飞时,他注意到 FMC 中输入了错误的跑道。机长要求副驾驶更正 FMC 中的跑道输入,她在起飞滑跑开始前约 27 秒完成了更正;但是,她没有输入新进入的跑道的 FLEX 温度(减小的起飞推力设置)或上传相关的 V 速度。结果,FMC 执行 FLEX 动力起飞的能力失效,并且在起飞滑跑期间,主飞行显示器 (PFD) 或多用途控制显示单元上没有显示 V 速度。
摘要:减少跑道入口处的出发队列长度是减少机场飞机交通拥堵和燃料消耗的最重要要求之一。本研究使用随时间变化的流体队列设计了跑道上的飞机出发模型。所提出的模型使我们能够确定出发队列中的飞机等待时间,并评估在登机口而不是跑道入口处分配合适停留的有效控制方法。作为案例研究,本研究模拟了东京国际机场 05 号跑道一整天的出发队列。使用机场出发的实际交通数据,该模型估计飞机在 05 号跑道上一天总共花费 2.5 小时的出发等待时间。考虑到实际出发交通的随机性,使用验证标准讨论了所提出的模型的相关性。与实际交通数据中记录的出发队列相比,模型估计显示出合理的预期数量级。此外,假设起飞排队长度减少,则定量评估生态和经济效益。我们的结果表明,由于飞机在一条起飞跑道上等待起飞,每年会浪费大约一千吨燃油。
Timothy T. Takahashi 1 亚利桑那州立大学,亚利桑那州坦佩,85287-6106 本文重新考虑使用火箭辅助起飞 (RATO) 系统来设计和认证更安静的商用飞机。由于飞机噪音在很大程度上取决于推进喷气速度,因此在起飞和降落时大幅“降低功率”可以显著降低特定客机对社区噪音的影响。例如,40% 的推力降低有可能进一步将飞机噪音降低多达 9 分贝。我之前的工作重点是探索扩展“油门推力”(ATTCS) 系统的可能性,而这项工作着眼于备用火箭辅助起飞系统的现场性能影响。波音公司早在 1970 年代就为 B727 认证了这种系统,以实现接近最大起飞重量的“热高原”操作。安全合法的调度要求飞机遵守八项主要规定:14 CFR § 25.105、14 CFR § 25.107、14 CFR § 25.109、14 CFR § 25.113、14 CFR § 25.121、14 CFR § 25.149 和 14 CFR § 36.B;它们共同确定了运输类飞机的最低允许起飞跑道要求。14 CFR § 25 附录 E 涵盖了备用火箭辅助系统的操作。这项工作探讨了此类提案在新型认证飞机上将面临的预定现场性能和性能认证问题。