TOA UHF 无线麦克风系统的最新产品线延续了 60 多年的尖端音质传统,享誉全球,无论是安装音频系统的专业人士,还是依靠 TOA 获得更大表达自由的专业人士和业余爱好者。新的 TOA 无线麦克风系统为各种应用带来了增强的多功能性、更大的覆盖范围和卓越的成本效益。凭借其最新的技术突破,TOA 可以将无线扩声的多功能性扩展到讲座、演讲或布道之外。现在,TOA 传输技术和麦克风设计涵盖了更广泛的领域
IFM 接收器的工作原理 当前的 IFM 接收器技术对 RF 频率、RF 幅度和 RF SNR 进行采样;随后的数字处理提取峰值 RF 幅度、与峰值 RF 测量时间同步的 RF 输入频率、TOA 和 RF 包络脉冲宽度。测量结果通过每个时钟周期估算的最小可接受 RF SNR 进行限定。这使接收器能够自动调整以适应输入 SNR 的变化,而无需积分噪声附加阈值。IFM 接收器数字处理和串行 PDW 生成使其成为处理超外差接收器 IF 输出的理想设备。在许多 ELINT 系统中,采用两个 IFM 接收器和一个超外差接收器的并行组合。一个 IFM 接收器提供 2-18GHz 的瞬时单频带覆盖,而超外差接收器使用第二个 IFM 接收器进行 IF 处理,提供对选定信号的高灵敏度精确分析。这种组合同时提供了高截获概率 (HPI) 能力和详细分析能力。IFM 接收器最显著的操作优势也是其最大的缺点:虽然它准确地处理瞬时观察到的最大 RF 输入信号,但它忽略了同时存在的较小功率的 RF 输入。在 IFM 接收器的早期开发中,同时出现低于 20dB 的信号并不罕见
I.1 一些历史介绍 1 I.1.1 谐振接收器、滤波器、相干器和平方律检波器(检波接收器) 1 I.1.2 Audion 的发展 2 I.2 当今概念 4 I.2.1 单次转换超外差 4 I.2.2 多次转换超外差 8 I.2.3 直接混频器 14 I.2.4 数字接收器 17 I.3 全数字无线电接收器的实例 23 I.3.1 数字信号处理功能块 25 I.3.2 作为关键组件的 A/D 转换器 26 I.3.3 转换为零频率 30 I.3.4 准确性和可重复性 33 I.3.5 用于频率调谐的 VFO 34 I.3.6 其他所需硬件 36 I.3.7 通过子采样 37 I.4 便携式宽带无线电接收器的实例 39 I.4.1 宽接收频率范围的模拟射频前端 40 I.4.2 后续数字信号处理 42 I.4.3 解调并测量接收信号电平 43 I.4.4 频率占用的频谱分辨率 45 参考文献 46 延伸阅读 48
电子管的使用并不局限于私营企业。一位名叫埃德温·霍华德·阿姆斯特朗的工程系学生与普平一起在哲学厅地下室用 Audion 电子管进行实验,这时他发现了如何通过再生电路放大无线电信号。1913 届的阿姆斯特朗在第一次世界大战期间驻扎在法国,在那里他发明了超外差电路来调谐和检测敌机点火系统的频率。战后,阿姆斯特朗改进了他的调频 (FM) 方法,到 1931 年,他既消除了静电,又永远提高了无线电广播的保真度。2003 年,哲学厅实验室被指定为国家历史地标,阿姆斯特朗贡献的历史意义得到了美国政府的认可。
随着数字接收器和高速数字化仪的出现,现代数字信号处理技术的优势已应用于无线电频率。数字接收器芯片对采样的射频信号进行下变频、低通滤波和抽取。由此产生的带宽和采样率降低使得执行实时计算(如 FFT 频谱分析)成为可能。多家制造商提供数字接收器芯片,包括 Graychip、Intersil 和 Analog Devices。Graychip 于 1990 年推出的第一款单芯片数字接收器是 GC1011 窄带接收器。Intersil(当时为 Harris)于 1992 年推出了其第一款芯片 HSP 50016。现在有许多数字接收器设备可供选择,以及用于将此电路整合到门阵列中的 IP 核。在本文中,我们将概述经典的模拟超外差接收器,并将其与数字接收器进行比较。如果您不想组装自己的电路板,您会很高兴知道,电路板制造商现在可以提供实现 COTS 平台数字接收器系统所需的现成电路板和软件。为此,我们将为您提供一个示例,说明如何使用 Pentek 提供的电路板组装数字接收器和信号分析系统的大部分。