摘要。对量子时代的技术进步需要安全的通信,量子计算和超敏感的传感能力。分层量子材料(LQM)具有显着的光电和量子性能,可以将我们引入量子时代。电子显微镜是在原子和纳米尺度上测量这些LQM的首选工具。另一方面,LQM的电子辐照可以修改各种材料特性,包括产生结构缺陷。我们回顾了不同类型的结构缺陷,以及电子弹性和非弹性造成的诱导过程。使用电子辐照的LQM的光电和量子性能的控制,包括创建单光子发射器。鼓励通过其他分层材料封装来保护电子辐射引起的LQM损坏。我们最终深入了解挑战和机会,包括使用电子束创建新的结构。
DNA甲基化(DNAME)是一种表观遗传标记,其中包括CPG岛中胞质的修饰(5MC)。除了调节基因表达,烙印和沉默的寄生DNA元素的表征良好的作用外,DNAME的不正调还与多种疾病有关。有证据表明,dname不是独立的表观遗传标记,而是与组蛋白的翻译后修饰(PTM)密切相关。但是,检查5MC和PTM之间的直接关系受到无法建立直接机械链接的单独测定的相关分析。此外,测量5MC的传统方法依赖于DNA的苛刻的Bisulfite化学对话,DNA引入了DNA断裂和全身偏见。为了解决这些局限性,我们开发了一种靶向的酶甲基化测序(TEM-SEQ)方法,这是一种超敏感的多摩变基因组映射技术,可在表位定义的染色质特征下提供高分辨率的DNAME谱。重要的是,该测定法可以检查5MC与组蛋白PTM和/或染色质蛋白(CHAPS)之间的直接分子联系。
摘要最近,由于在光学超材料,超敏感的等离激元纳米量学学,增强的非线性谐波产生等方面的吸引人的应用,血浆诱导的光学磁化吸引了人们对纳米光子学和等离子间学的研究兴趣。据我们所知,在这里,我们在实验和理论上首次观察到在超薄等离子体型纳米腔内的平面内磁性偶极共振,由二氧化硅涂层的金纳米球二聚体组成,并偶联到金薄膜。结合了多极膨胀和全波数值模拟,我们揭示了磁共振是由围绕球体二聚体和金膜包含的纳米厚的三角形区域循环的位移电流环引起的,从而导致腔隙间隙中的磁场强度极大地增强了磁场强度。在单粒子水平上使用极化分辨的深色场成像和光谱法,我们明确地“可视化”了诱导磁性模式的光谱响应和辐射极化,其特征与电偶极共振截然不同。我们进一步发现,磁共振频率高度取决于腔间隙厚度和纳米圈尺寸,从而可以直接从可见光到近红外区域进行简单的谐振调整,从而为磁共振增强的新途径增强了非线性光学光学和手性光学。
摘要:在这项研究中,我们提出了一种针对精确检测Zearalenone的新颖而超敏感的磁性侧向流免疫测定(LFIA),Zearalenone是一种对人类和动物健康的重要意义的霉菌毒素。与共价固定策略相比,提出了一种多功能且直接的方法,用于创建非共价磁标签。我们采用磁性粒子定量(MPQ)技术来精确检测标签和其功能表征,包括测量颗粒表面上的抗体吸附密度。通过动力学研究使用无标记的光谱相干涉量,与游离(不与载载蛋白)Zearalenone结合的单克隆抗体结合的速率和平衡常数被确定为k on = 3.42×10 5 m-1 s - 1 s - 1 s - 1,k off = 7.05×10-4 s s-k off = 7.05×10-4 s-k d = 0.06 m.使用基于共价固定化和非共价吸附的磁标记时,MPQ-LFIA方法表现出2.3 pg/mL和7.6 pg/ml的检测限,动态范围为5.5和5阶。我们成功地阐明了在被镰刀菌污染的大麦粉样品中的有效测定。开发测试系统的易用性和有效性进一步增强了其价值作为解决霉菌毒素污染挑战的实用工具。
上皮卵巢癌(EOC)是全球女性与癌症相关死亡的主要原因之一,其特征是手术和化学疗法后的复发率很高。我们试图实施循环的肿瘤DNA(CTDNA) - 基于血液检查,以对该疾病进行更准确的术后监测。我们分析了2016年6月至2021年9月在63名EOC患者之间收集的264个血浆样品,使用肿瘤引导的无血浆细胞DNA分析,以检测治疗后的残留疾病。分析进行了验证。ctDNA,在进展中检测到18个(100%)样品中的18个(100%)。在最后进行处理样本中的阳性ctDNA与快速进展(中位数1.02对3.38年,HR = 5.63,p <0.001)和降低的总生存率(中位2.31对NR YR,HR,HR = 8.22,P <0.001)患者在高级别浆液癌的患者中。对于12例患者,ctDNA测定法比标准监视早得多,中间时间为5.9 mo。要接近ctDNA检测的物理极限,使用超敏感的测定法对五名患者进行了询问479 - 1,856肿瘤突变,能够跟踪CtDNA馏分降至0.0004%。我们的结果表明,CTDNA测定在检测EOC中术后残留疾病时具有高灵敏度和特异性。
第一次量子革命始于一个centurury,当时马克斯·普朗克(Max Planck),阿尔伯特·爱因斯坦(Albert Einstein)和埃文·施罗德(ErwinSchrödinger)在神秘的量子领域开发了他们的理论。自20世纪末以来,第二次开始进行,当时我们开始利用技术服务的量子物理定律。今天,全球政府和技术公司正在投资于众多基于量子的应用程序,从黑客通信到超敏感的传感器和量子计算机。然而,创建真正可用的,功能齐全的量子计算机被证明是很难破解的坚果。ETH早期投资于量子研究,现在在教育,研发中发挥了领导作用。我们非常希望我们能够保持这一立场,即使在当今充满挑战的政治气氛中。量子技术对像瑞士这样的国家很重要,我们的目标是保持领先地位。由ETH和PSI建立的新量子中心是我们战略的关键部分,新的HPQ实验室大楼也计划于2025年完成。同样,量子工程科学硕士学位是我们向我们迫切需要开发这些新技术的专家提供最佳基础的方式。尽管我们在知识方面取得了一切进步,但许多量子领域仍然是一个谜,它的许多现象都构成了我们对现实的日常假设。当然,这是使量子世界如此引人入胜的一部分,就像您在本期《地球》中发现的那样。
需要快速,特定和可靠的诊断策略来开发用于小分子检测的敏感生物传感器,这可能有助于控制污染和疾病传播。最近,利用了目标诱导的CAS核酸酶的侧支活性[定期插入的短篇小语重复序列(CRISPR)相关的核酸酶]来开发用于检测核酸和小分子的高吞吐量诊断模块。在这里,我们通过开发Bio-Scan V2来扩展CRISPR-CAS系统的诊断能力,这是一个用于检测非核酸小分子靶标的配体反应性CRISPR-CAS平台。生物扫描V2由工程化的配体反应SGRNA(LIGRNA),生物素化死亡CAS9(DCAS9- Biotin),6-羧基流氟氨基酶(FAM) - 标记的扩增子和侧面流量测定(LFA)strips。ligrna仅在sgrna-特异性配体分子的存在下与DCAS9-biotin相互作用以形成核糖核蛋白(RNP)。接下来,将配体诱导的核糖核蛋白暴露于被标记的扩增子进行结合,并检测到配体(小分子)的存在为视觉信号[(DCAS9-biotin) - ligrna-fam-fam标记的DNA-aunp Complection]在侧面效果的测试线上。使用Bio-Scan V2平台,我们能够在短时间内以高达2μm的检测限(LOD)检测模型分子Theophiphline,只需15分钟即可从样本应用到视觉读数。在一起,生物扫描V2分析为茶碱提供了快速,特定和超敏感的检测平台。
摘要:二维过渡金属二甲藻元化半导体(2D TMD)的光电和转运性能非常容易受到外部扰动的影响,从而可以通过后体系修饰来精确地定制材料功能。在这里我们表明,纳米级不均匀性称为纳米泡得很不均匀,可用于菌株,而在双层二硫化物中,激发激子转运的介电调节(WSE 2)。我们使用超敏感的空间分辨的光学散射显微镜直接对激子的传输进行成像,这表明介电纳米泡在室温下在漏斗和捕获激子的效率上非常有效,即使明亮的激子的能量受到了忽略的影响。我们的观察结果表明,电介质不均匀性中的激子漏斗是由动量 - 间接(黑暗)激子驱动的,这些激动型(黑暗)激子的能量比明亮的激子对介电扰动更敏感。这些结果揭示了使用深色态能量景观的介电工程进行特殊空间和能量精确的2D半导体中控制激子传输的新途径。主要文本:二维过渡金属二甲藻元化半导体(2D TMD)是范德华的材料,由于其强烈的光 - 含量相互作用,即使在原子上薄的限制下,它们也对纳米级光电构成了巨大的希望。2D TMD的光电特性在很大程度上受其库仑结合的电子孔对(激子)的控制,其结合能相对较大,高达数百个Milli-Electronvolts(MEV),这是由于平面外介电介质筛选而导致的。1–6与自由电荷不同,激子是电荷中性的,因此很难用电子设备中的外部电场来操纵。7–9因此,激子的传输特性在很大程度上取决于随机的扩散运动,没有远程方向性,从而限制了它们作为信息和能量载体的使用。寻找在2D TMD中操纵激子传输的新方法,而不会根本改变其他材料特性,这将产生激子设备,这些设备结合了强烈的光结合,并精确地控制了原子上薄材料中能量和信息流的精确控制。控制2D TMD的特性的一种有吸引力的途径是利用其对菌株,10–21和环境筛查等外在因素的极端敏感性(图1A),5,22-26,实现对光电和运输特性的合成后调节。例如,拉伸应变减少了2D TMD的光学过渡能;因此,16,18,27,28个局部应变区域会产生能量梯度,可以在纳米级低能部位漏洞和捕获激子,该过程被利用以创建长寿命的量子发射器。14,29–33菌株工程很难控制宏观尺度,并且可能引入不良疾病。