在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
类脑计算是借鉴脑科学基本原理,打破 “ 冯诺依曼 ” 架构束缚的新型计算技术。本研究组将从理论和器件两个方向对类脑计算展开协同 研究。 理论方面:研究类脑计算架构、模型和算法,探索基于类脑计算的类脑智能的基础理论;借鉴神经元模型、神经环路传导、神经编码 及认知、学习、记忆、决策等神经机制,逐步建立和完善类脑处理信息处理的数学 / 计算原理和模型;构建类脑计算和智能的统一理论 框架。为类脑计算器件及系统的发展提供理论基础。 器件方面:基于新材料和新技术,研究新型高性能类脑神经器件,解决一致性差、可靠性差、规模化难等痛点;研究基于类脑神经器 件的网络架构,构建大规模阵列,开展外围电路的研发与设计;研究基于新型类脑器件的感知和计算架构,发展感存、存算、感存算 一体系统。
自闭症谱系障碍(以下称为自闭症)是最常见的神经发育状况之一,影响了大约1%的世界人群[1]。据估计,超过90%的自闭症个体表现出非典型的感觉反应性[2]。对外部刺激的超反应性或性能不反应的形式的非典型感觉反应性是自闭症中的基本预定。在感觉域中,非典型触觉反应性(TR)是一种常见的预言,早期出现,一直持续到成年,并不利地影响社会互动和日常功能,从而显着有助于整体残疾[3,4]。自闭症护理和临床研究未来的国际委员会将感觉领域确定为可能影响自闭症中护理和结果的最佳临床研究优先事项之一[5]。我们聘请了参加我们专业自闭症诊所的自闭症成年人,并收到了一致的反馈,即这是一个很大的未满足需求的高优先级领域。在行为上,触觉性低反应性和过度反应性都在相同的连续体上,反映了相同的基本生物学过程,在这种生物学过程中,低反应性是应对过度刺激的应对机制[6]。触觉加工的神经生理学研究[4,6]以及自闭症原发性皮质(S1)中兴奋性和抑制性代谢产物的神经图像研究仍然不一致且不确定[7,8];因此,大脑过程为非典型TR提供了生物逻辑干预措施仍然难以捉摸。融合证据表明自闭症的神经生物学的特征是非典型可塑性。自闭症的丙戊酸动物模型的关键见解是,过度的长期增强(LTP)可塑性或超塑性对行为产生不利影响[9-11]。超塑性[11]。S1是否具有过度塑性的特征,在自闭症人类中可能是非典型TR的基础,这是未知的。使用经颅磁刺激(TMS)[12-15]在人类运动中始终观察到更直接的过塑性证据[16]。我们的小组复制了自闭症成年人运动皮质中超塑性的发现[15]。作为干预的基础,我们还使用重复的经颅杂志刺激(RTMS)方案收集了试点数据,旨在增强抑制机制,从而降低了自闭症成年人的过度塑性性[15]。在我们先前发表的研究[15]中,我们进行了一项随机试验,涉及29名自闭症成年人。将参与者分配(1:1)进行一次活动或假RTM的一次疗程,在20Hz处施加6,000个脉冲,tar-获得运动皮层。结果表明,活性RTM对长期增强(LTP)的效果很大,在RTMS之后的第二天,LTP降低了。这种过度塑性的减小与自闭症的神经元激发/抑制(E/I)模型的改变相一致[17]。根据该模型,自闭症中观察到的超塑性与E/I比的增加有关,促进抑制可能有助于观察到的减少。使用20 Hz RTM的理由主要基于我们小组的先前研究,这表明与早期的惯例相反,仅频率并不能决定RTMS的兴奋性或抑制作用。,“剂量”或刺激的数量
由副教授Poh Chueh Loo(右)领导的研究团队将开拓创新的“生物相机”的开发,该创新“生物相机”通过活细胞及其生物学机制编码并记住数据。
[15] Watanabe Tomonori等人:低温工程39,553(2004)。[16] Iimi Akira等人:低温工程42,42(2007)。[17] A.P.Malozemoff和Y. Yamada:超导100年,第11章“第二代HTS Wire”,P689(CRC出版社,2011年)。和Izumi Teruro,Yanagi Nagato:血浆和核融合杂志93,222(2017)。大量的制造方法,包括兔子底物,mod(化学溶液方法)和真空蒸发方法。 [18] http:// www。istec。或。JP/Tape-Wire/Labo-Tape-Wire。html,使用PLD方法和MOD方法(化学溶液方法)的金属棒的高性质。[19] T. Haugan等。,自然430,867(2004)。[20] Y. Yamada等。,应用。物理。Lett。 87,132502(2005)。 [21] H. Tobita等。 ,超级条件。 SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Lett。87,132502(2005)。[21] H. Tobita等。,超级条件。SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。SCI。技术。25,062002(2012)。[22] Matsumoto Kaname:应用物理77,19(2008)。[23] Yamada Shigeru:应用物理93,206(2024)。[24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。[25] Miyata Noboru:材料37,361(1988)。[26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。,科学。Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Rep。11,8176(2021)。[28] R. Hiwatari等。,血浆融合res。14,1305047(2019)。[29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。[30] D. uglietti,超越。SCI。 技术。 32,053001(2019)。SCI。技术。32,053001(2019)。
摘要。快速磁共振成像(MRI)序列在临床环境中高度要求。但是,成像信息不足会导致诊断困难。MR图像超分辨率(SR)是解决此问题的一种有希望的方法,但是由于获取配对的低分辨率和高分辨率(LR和HR)图像的实际困难,其性能受到限制。大多数现有的方法都使用倒数采样的LR IMENES,由于俯瞰域距离或由未知和复杂的降解引起的近似差而可能不准确。在这项研究中,我们提出了一个基于真实但未配对的HR/LR图像的1.5T MR脑图像的域距离调整SR框架。我们的框架工作利用了学习任意未配对图像的抽象表示并适应域间隙的能力,从而使其可行,以证明现实的下采样。此外,我们提出了一个新颖的生成对抗网络(GAN)模型,该模型集成了包含编码器,骨干和解码器的发电机,以及一个基于UNET的歧视器和多尺度感知损失。这种方法产生了令人信服的纹理,并成功地恢复了众所周知的公共数据集上过时的1.5T MRI数据,在感知和定量评估中的最先进的SR方法表现优于最先进的SR方法。
摘要 — 临床环境对高细节和快速磁共振成像 (MRI) 序列的需求很高,因为成像信息不足会导致诊断困难。MR 图像超分辨率 (SR) 是一种很有前途的解决此问题的方法,但由于获取成对的低分辨率和高分辨率 (LR 和 HR) 图像的实际困难,其性能受到限制。大多数现有方法通过下采样 HR 图像来生成这些对,这个过程通常无法捕获复杂的退化和特定于域的变化。在本研究中,我们提出了一个域距离自适应 SR 框架 (DDASR),其中包括两个阶段:域距离自适应下采样网络 (DSN) 和基于 GAN 的超分辨率网络 (SRN)。DSN 在下采样过程中结合了未配对 LR 图像的特征,从而能够生成域自适应的 LR 图像。此外,我们提出了一种具有增强注意力 U-Net 和多层感知损失的新型 GAN。所提出的方法产生了视觉上令人信服的纹理,并成功恢复了来自 ADNI1 数据集的过时 MRI 数据,在感知和定量评估中均优于最先进的 SR 方法。代码可在 https://github.com/Yaolab-fantastic/DDASR 上找到。
摘要 — 临床环境对高细节和快速的磁共振成像 (MRI) 序列有很高的要求,因为成像信息不足会导致诊断困难。MR 图像超分辨率 (SR) 是解决此问题的一种有前途的方法,但由于获取成对的低分辨率和高分辨率 (LR 和 HR) 图像的实际困难,其性能受到限制。大多数现有方法通过下采样 HR 图像来生成这些对,而这个过程通常无法捕捉到复杂的退化和特定于域的变化。在本研究中,我们提出了一个域距离自适应 SR 框架 (DDASR),其中包括两个阶段:域距离自适应下采样网络 (DSN) 和基于 GAN 的超分辨率网络 (SRN)。DSN 在下采样过程中结合了未配对 LR 图像的特征,从而能够生成域自适应的 LR 图像。此外,我们提出了一种具有增强注意力 U-Net 和多层感知损失的新型 GAN。所提出的方法可产生视觉上令人信服的纹理,并成功恢复 ADNI1 数据集中过时的 MRI 数据,在感知和定量评估方面均优于最先进的 SR 方法。代码可在 https://github.com/Yaolab-fantastic/DDASR 上找到。
报道了在非二元分级多模具纤维中从可见的到中红外(700–2800 nm)产生的两幅度超脑(700–2800 nm)。纤维设计基于纳米结构的核心,该核心由两种类型的铅孔 - 孔 - 玻璃棒,具有不同的折射率。与二氧化硅纤维相比,这种结构产生了有效的抛物线指数,扩展的传输窗口和十倍非线性。使用正常和异常分散体的波长在波长下进行脉搏泵,对定期自我成像播种的超核生成机制和不稳定性进行了详细的研究。显着地,发现高功率状态下合适的注射条件会导致输出光束发射显示出从非线性模式混合中自我清洁的明确签名。实验观测是使用广义非线性schrödinger方程的时空3+1d Nu-Merical模拟来解释的,并且模拟光谱与完整的两座光谱带宽的实验非常吻合。这些结果证明了一种新的途径,可以在中红外产生明亮的超人物光源。
用于磁共振成像 (MRI) 的单图像超分辨率 (SISR) 重建引起了人们的极大兴趣,因为它不仅可以加快成像速度,还可以改善可用图像数据的定量处理和分析。生成对抗网络 (GAN) 已被证明在图像恢复任务中表现良好。在这项工作中,我们遵循 GAN 框架并开发了一个与鉴别器相结合的生成器来解决 T1 脑 MRI 图像上的 3D SISR 任务。我们开发了一种新颖的 3D 内存高效的残差密集块生成器 (MRDG),其在 SSIM(结构相似性)、PSNR(峰值信噪比)和 NRMSE(归一化均方根误差)指标方面实现了最先进的性能。我们还设计了一个金字塔池化鉴别器 (PPD) 来同时恢复不同尺寸尺度上的细节。最后,我们引入了模型混合,这是一种简单且计算效率高的方法,可以平衡图像和纹理