背景:微度是短暂的睡眠实例,导致双眼的反应性以及部分或全部延伸的闭合。微骨会带来毁灭性的后果,尤其是在跨性别部门。研究目标:关于微渗的神经特征和潜在机制的问题。这项研究旨在更好地了解微骨的生理底物,这可能会使人们对现象有更好的了解。方法:分析了一项早期研究的数据,涉及20个健康的非腿部剥夺受试者。每个会话持续50分钟,并需要受试者执行2D连续的视觉运动跟踪任务。同时数据收集包括跟踪性能,Eye-Video,EEG和FMRI。一个人类专家在视觉上检查了每个参与者的跟踪性能和视频录音,以识别微质量。我们的兴趣是微度≥4-S的持续时间,使我们总共有10个受试者的事件。微填布事件分为四个2-S段(前,开始,开始,结束和帖子)(中间,开始和末端段之间存在差距,对于微渗> 4 s),然后通过检查以前的段来分析每个片段,通过检查源代源的eeg eeg power in delta,delta,theta,theta,alpha,alpha,beta,beta,beda,beda,beda,beda,beda,beda,beda sega sega sega sega sega,beda,beda,beda sega sega sega be n of seg eeg pown。结果:theta和alpha频段的EEG功率增加了微骨前和开始之间。在微渗的起点和末端之间,三角洲,beta和伽马频段的功率也增加。相反,在三角洲和阿尔法频段的微度末端和柱头之间的功率降低了。这些发现支持三角洲,theta和alpha频段中的先前发现。然而,以前尚未报道Beta和伽马频段的功率增加。结论:我们认为,在微观休息期间增加的高频活性反映了无意识的“ cogni tive”活性,旨在重新建立在积极任务中入睡后重新建立意识。
Crundall, D. E., & Underwood, G. (1998).经验和处理需求对驾驶员视觉信息获取的影响。人体工程学,41 (4),448 – 458。Ellis, S. R., & Stark, L. (1986)。视觉扫描中的统计依赖性。人为因素:人为因素和人体工程学学会杂志,28 (4),421 – 438。Green, P. (2015)。驾驶员在驾驶时看哪里(以及看多长时间)。交通安全中的人为因素,77 – 110。Harris Sr, R. L., Glover, B. J., & Spady Jr, A.A.(1986)。飞行员扫描行为的分析技术及其应用 (NASA Tech.报告号2525)。弗吉尼亚州汉普顿:兰利研究中心。Haslbeck, A., & Zhang, B.(2017)。我用我的小眼睛观察:在手动仪表飞行场景中分析航空公司飞行员的注视模式。应用人体工程学,63,62 – 71。Hillier,F. S.(2012)。运筹学简介。Tata McGraw - Hill Education。国际标准化组织。(2002)。ISO 15007 - 1:道路车辆 - 测量与运输信息和控制系统相关的驾驶员视觉行为 - 第 1 部分:定义和参数。摘自 http://www.iso.org Itoh,Y.,Hayashi,Y.,Tsukui,I.,& Saito,S.(1990)。飞机飞行员眼球运动和心理工作负荷的人体工程学评估。人体工程学,33 (6),719 – 732。Jeong, H.,& Liu, Y.(2019)。非驾驶相关任务模式和道路几何形状对驾驶时眼球运动、车道保持性能和工作量的影响。交通研究 F 部分:心理学和行为,60,157 – 171。Kang, Z.,& Landry, S. J.(2014)。使用扫描路径作为多目标跟踪冲突检测任务的学习方法,56 (6),1150 – 1162。Kang, Z., & Landry, S. J.(2015)。多元素目标跟踪任务的眼动分析算法:基于最大转换的聚集层次聚类。IEEE 人机系统学报,45 (1),13 – 24。Krejtz, K., Duchowski, A., Szmidt, T., Krejtz, I., González Perilli, F., Pires, A., … Villalobos, N. (2015)。凝视转换熵。ACM 应用感知通讯 (TAP),13 (1),4 – 20。Liang, Y.、Horrey, W. J. 和 Hoffman, J. D. (2015)。开车时阅读文本:了解驾驶员对分心的战略和战术适应。人为因素:人为因素和人体工程学学会杂志,57 (2),347 – 359。Liang, Y., Lee, J. D., & Yekhshatyan, L. (2012)。视线偏离道路有多危险?算法根据自然驾驶中的扫视模式预测碰撞风险。人为因素:人为因素和人体工程学学会杂志,54 (6),1104 – 1116。Liechty, J., Pieters, R., & Wedel, M. (2003)。全局和局部隐性视觉注意:来自贝叶斯隐马尔可夫模型的证据。Psycho- metrika,68 (4),519 – 541。Marchitto,M.,Di Stasi,L. L.,& Cañas,J. J.(2012)。任务负荷操纵下的眼球运动:几何形状对空中交通管制模拟任务中扫视的影响。制造业和服务业的人为因素和人体工程学,22 (5),407 – 419。Milton,J.,& Mannering,F. (1998)。公路几何形状、交通相关元素和机动车事故频率之间的关系。交通运输,25 (4),395 – 413。Mourant, R. R. 和 Rockwell, T. H. (1970)。将眼球运动模式映射到驾驶中的视觉场景:一项探索性研究。人为因素:人为因素和人体工程学学会杂志,12 (1),81 – 87。Noton, D. 和 Stark, L. (1971)。眼球运动和视觉感知。《科学美国人》 ,224 (6),34 – 43。Pradhan, A. K.、Hammel, K. R.、DeRamus, R.、Pollatsek, A.、Noyce, D. A. 和 Fisher, D. L. (2005)。使用眼球运动评估驾驶员年龄对驾驶模拟器中风险感知的影响。《人为因素:人为因素和人体工程学学会杂志》 ,47 (4),840 – 852。