多年来,组织一直试图通过解决更多点安全解决方案来限制其安全体系结构中的任何空白来超越对手。现在,我们已经达到了回报率降低的点,并增加其他产品正在增加更复杂的性能,增加了响应时间,并最终使我们降低了安全。是时候重新想象一下我们如何实现安全性并利用AI的力量来提供速度和规模。使正确的高级安全解决方案无缝地协同工作可以提供急需的分层方法,以提高操作效率并降低复杂性。
摘要 — 在对抗网络攻击的斗争中,网络软件化 (NS) 是一种灵活且适应性强的盾牌,它使用先进的软件来发现常规网络流量中的恶意活动。然而,移动网络的综合数据集仍然有限,而这些数据集对于开发用于在源头附近检测攻击的机器学习 (ML) 解决方案至关重要。跨域人工智能 (AI) 可以成为解决这一问题的关键,尽管它在开放无线接入网络 (O-RAN) 中的应用仍处于起步阶段。为了应对这些挑战,我们部署了一个端到端 O-RAN 网络,用于从 RAN 和传输网络收集数据。这些数据集使我们能够结合来自网络内 ML 流量分类器的知识进行攻击检测,以支持专门为 RAN 量身定制的基于 ML 的流量分类器的训练。我们的结果证明了所提出方法的潜力,准确率达到 93%。这种方法不仅弥补了移动网络安全方面的关键差距,而且还展示了跨域 AI 在提高网络安全措施有效性方面的潜力。索引词——跨域人工智能;攻击检测;移动网络;O-RAN;5G。I. 引言网络攻击呈上升趋势 [1],网络处于防御的第一线。交换机、路由器、服务器和最终用户都需要保护以免受恶意威胁。网络软件化 (NS) 已成为这场斗争中的关键工具,它提供灵活性、可扩展性以及快速部署尖端软件解决方案的能力。NS 可帮助安全专业人员在大量良性网络流量中识别恶意活动。在对抗网络对手的斗争中,适应和快速应对新威胁的能力至关重要。因此,NS 可实现现代网络基础设施的弹性和完整性 [2]。在 NS 方面,软件定义网络 (SDN) 开创了高级可编程性的新时代。除其他功能外,它还允许将 ML 集成到数据平面 [3]–[5]。可编程网络设备彻底改变了网络的各个方面,实现了基于机器学习的动态拥塞控制策略 [6]、[7]、智能负载平衡机制 [8]、[9] 和精确的服务质量 (QoS) 管理 [10]–[12]。最近有许多出版物研究了流量分类 [13]–[17],其中 [15]–[17] 中的研究使用流量分类进行攻击检测。尽管可编程数据平面被广泛使用,但在开发和部署新功能时仍需要考虑一些挑战。虽然 P4 语言提供了巨大的潜力,但诸如缺乏对浮点的支持等限制
由于脑电图 (EEG) 的非侵入性和高精度,EEG 和人工智能 (AI) 的结合经常被用于情绪识别。然而,EEG 数据的内部差异已成为分类准确性的障碍。为了解决这个问题,考虑到来自性质相似但不同领域的标记数据,领域自适应通常提供一个有吸引力的选择。大多数现有研究将来自不同受试者和会话的 EEG 数据聚合为源域,忽略了源具有一定边际分布的假设。此外,现有方法通常仅对齐从单个结构中提取的表示分布,并且可能仅包含部分信息。因此,我们提出了用于跨域 EEG 情绪识别的多源和多表示自适应 (MSMRA),它将来自不同受试者和会话的 EEG 数据划分为多个域,并对齐从混合结构中提取的多个表示的分布。使用两个数据集 SEED 和 SEED IV 在跨会话和跨主题传输场景中验证所提出的方法,实验结果证明我们的模型在大多数情况下比最先进的模型具有更优越的性能。
抽象目标。本研究旨在建立一个广义的转移学习框架,以通过利用跨域数据传输来提高稳态视觉诱发电位(SSVEP)基于脑部计算机界面(BCIS)的性能。方法。我们通过结合了最小二乘转换(LST)的转移学习来增强基于最新的模板的SSVEP解码,以利用跨多个域(会话,主题和脑电图蒙太奇)利用校准数据。主要结果。研究结果验证了LST在跨域传输现有数据时消除SSVEP的可变性的功效。此外,基于LST的方法比标准与任务相关的组件分析(TRCA)的方法和非第一个天真转移学习方法明显更高的SSVEP解码精度。意义。这项研究证明了基于LST的转移学习能够在各种情况下对其原理和行为进行深入研究,从而利用主题和/或设备的现有数据。当校准数据受到限制时,提出的框架显着提高了标准TRCA方法的SSVEP解码精度。其在校准减少方面的性能可以促进基于SSVEP的BCIS和进一步的实用应用。
摘要 本报告对应于 OPEN DEI 项目的“WP2 - OPEN DEI 跨行业数字平台联盟”的可交付成果 D2.1,并为构建数字平台的参考架构领域最相关的工作提供了有用的见解,以支持 OPEN DEI 所针对的四个行业(即制造业、农业、能源和医疗保健)的数字化转型之旅。第 2 章中介绍的最新技术描述了通用架构和标准架构,而第 3 章介绍了 OPEN DEI 所涉及领域的一些相关项目示例。第 4 章代表了 OPEN DEI 参考架构框架 (RAF) 规范的基础,定义了基本原则、互操作性需求和 RAF 规范的首次发布。OPEN DEI RAF 将基于 6 个主要基本原则(互操作性、开放性、可重用性、避免供应商锁定、安全性和隐私性、支持数据经济)并遵循 6C 架构模型。此处描述的见解将用于 OPEN DEI 项目的后续活动(例如跨领域工作组),而进一步的进展和经验教训将在本报告的下一轮迭代中记录,该报告将于 M24(2021 年 5 月)发布。
摘要:在现实世界中,对一个对象(例如:人、机器等)的分析和决策并不依赖于单个领域(例如:社交网络、地理、实时媒体等)或单个来源。为了提供更好的调查和质量推理,需要组合(融合)来自不同来源的数据。数据集成用于集成来自不同来源的数据以增强信息的目的,但它不适合大数据集。数据融合是一种数据分析技术,它融合了代表同一对象的多种单独类型的数据(大数据集)。针对一个对象的多种数据协同工作产生的效果大于它们单独效果的总和。数据融合的关键挑战是很难检索和融合不同领域的数据。为了解决这个问题,提出了跨域数据融合应用和技术。本文全面讨论了数据融合的发展及其应用。提出了一种用于医疗保健领域的预测模型的新框架。关键词:大数据、数据融合、数据集成、跨域数据融合、沉淀。 1. 简介 传统数据挖掘仅分析项目的物理存在与否,不考虑数据的语义方面 [1]。但在大数据时代,人类每天都会从各种来源(例如传感器、社交媒体、物联网、外部互联网)以各种形式创建出数以千万亿字节的数据