刘仲民,杨富君,胡文瑾 .多尺度特征交互的伪标签无监督域自适应行人重识别 [J].光电工程, 2025 , 52 (1): 240238 Liu Z M, Yang F J, Hu W J. Multi-scale feature interaction pseudo-label unsupervised domain adaptation for person re- identification[J].Opto-Electron Eng , 2025, 52 (1): 240238
视觉提问(VQA)是用户体验的关键,尤其是在改善视觉语言模型(VLMS)的概括能力之后。但在实际设置中使用标准化框架评估应用程序要求的VLM仍然具有挑战性。本文旨在使用端到端框架解决该问题。我们提出VQA360 - 一种源自估计的VQA基准测试的新型数据集,该数据集用任务类型,应用程序域和知识类型注释,以进行全面评估。我们还引入了Goeval,这是一种使用GPT-4O开发的多模式评估度量,与Human判断相关系数为56.71%。我们使用状态VLMS的实验表明,没有任何单个模型都普遍擅长,因此,将正确的选择成为关键的设计决策。专有模型(例如Gemini-1.5-Pro和GPT-4O-Mini)通常优于其他模型,但是诸如InternVL-2-8B和COGVLM-2-LALAMA-3-19B之类的开源模型也表现出竞争优势,同时提供了其他优势。我们的框架工作也可以扩展到其他任务1。
1) MD Zeiler 和 R. Fergus:可视化和理解卷积网络,欧洲计算机视觉会议 (2014)。 2) https://jp.mathworks.com/help/deeplearning/ug/understand- network-predictions-using-occlusion.html 3) Noriyoshi Miyoshi、Ryo Kawasaki、Hidetoshi Eguchi 和 Yuichiro Toki:大阪大学 AI 医院和胃肠外科的现状和前景,Surgery, 83, 11 (2021) 1153。
摘要 — 使用基于脑电图 (EEG) 的脑机接口 (BCI) 来区分运动想象是一项挑战,因为它涉及大量的数据采集阶段,需要用户付出大量的努力。为了解决这个问题,一种方法是使用无监督域自适应,其中使用来自多个受试者的数据构建分类模型,并且仅使用来自目标用户的未标记数据进行模型校准。然而,由于来自运动想象的大脑模式因人而异,因此在使用多个受试者构建分类模型时必须考虑每个受试者的可靠性。因此,在本文中,我们提出了 Selective-MDA,它对每个源受试者执行域自适应,并根据它们的域差异有选择地限制影响。为了评估我们的方法,我们使用两个公共数据集 BCI 竞赛 IV IIa 和自动校准和循环自适应数据集来评估我们的结果。我们通过比较基于差异度量选择不同数量的源域时的判别性能来进一步研究源选择的影响。我们的结果表明,Selective-MDA 不仅将多源域适应性融入跨受试者运动意象辨别,而且还突出了在使用来自多个受试者的数据进行模型训练时源域选择的影响。
摘要 — 在对抗网络攻击的斗争中,网络软件化 (NS) 是一种灵活且适应性强的盾牌,它使用先进的软件来发现常规网络流量中的恶意活动。然而,移动网络的综合数据集仍然有限,而这些数据集对于开发用于在源头附近检测攻击的机器学习 (ML) 解决方案至关重要。跨域人工智能 (AI) 可以成为解决这一问题的关键,尽管它在开放无线接入网络 (O-RAN) 中的应用仍处于起步阶段。为了应对这些挑战,我们部署了一个端到端 O-RAN 网络,用于从 RAN 和传输网络收集数据。这些数据集使我们能够结合来自网络内 ML 流量分类器的知识进行攻击检测,以支持专门为 RAN 量身定制的基于 ML 的流量分类器的训练。我们的结果证明了所提出方法的潜力,准确率达到 93%。这种方法不仅弥补了移动网络安全方面的关键差距,而且还展示了跨域 AI 在提高网络安全措施有效性方面的潜力。索引词——跨域人工智能;攻击检测;移动网络;O-RAN;5G。I. 引言网络攻击呈上升趋势 [1],网络处于防御的第一线。交换机、路由器、服务器和最终用户都需要保护以免受恶意威胁。网络软件化 (NS) 已成为这场斗争中的关键工具,它提供灵活性、可扩展性以及快速部署尖端软件解决方案的能力。NS 可帮助安全专业人员在大量良性网络流量中识别恶意活动。在对抗网络对手的斗争中,适应和快速应对新威胁的能力至关重要。因此,NS 可实现现代网络基础设施的弹性和完整性 [2]。在 NS 方面,软件定义网络 (SDN) 开创了高级可编程性的新时代。除其他功能外,它还允许将 ML 集成到数据平面 [3]–[5]。可编程网络设备彻底改变了网络的各个方面,实现了基于机器学习的动态拥塞控制策略 [6]、[7]、智能负载平衡机制 [8]、[9] 和精确的服务质量 (QoS) 管理 [10]–[12]。最近有许多出版物研究了流量分类 [13]–[17],其中 [15]–[17] 中的研究使用流量分类进行攻击检测。尽管可编程数据平面被广泛使用,但在开发和部署新功能时仍需要考虑一些挑战。虽然 P4 语言提供了巨大的潜力,但诸如缺乏对浮点的支持等限制
G. Denaro,D。Gaglione,N。Forti,A。 Simone,F。Daffina,G。Bottini,D。Quattrociocchi,L.Millefiori,P.Braca,S。Carniel,P。Willett,A。Iodice,D。Riccio,D。Riccio,A。Farina,“空间全球海上监视”。 第一部分:卫星技术,“ IEEE航空和电子系统杂志,2021年。Simone,F。Daffina,G。Bottini,D。Quattrociocchi,L.Millefiori,P.Braca,S。Carniel,P。Willett,A。Iodice,D。Riccio,D。Riccio,A。Farina,“空间全球海上监视”。第一部分:卫星技术,“ IEEE航空和电子系统杂志,2021年。
尽管使用多电极阵列记录的数据具有高维性,但与行为相关的神经群体活动被认为是固有的低维。因此,使用潜在变量模型预测神经群体记录的行为已被证明是最有效的。然而,随着时间的推移,单个神经元的活动可能会漂移,并且由于植入的神经探针的移动,不同的神经元将被记录下来。这意味着,在某一天训练预测行为的解码器在另一天测试时表现更差。另一方面,有证据表明,行为的潜在动态即使在数月和数年内也可能保持稳定。基于这个想法,我们引入了一个模型,该模型能够从同一动物记录的以前未见过的数据中推断出与行为相关的潜在动态,而无需重新校准解码器。我们表明,无监督域自适应与经过多次训练的顺序变分自动编码器相结合,可以实现对未见过数据的良好泛化,并正确预测传统方法无法预测的行为。我们的研究结果进一步支持了行为相关的神经动力学低维且随时间稳定的假设,并将使脑机接口技术更加有效和灵活地使用。