Comtech Telecommunications Corp. 是一家全球领先的科技公司,为全球商业和政府客户提供地面和无线网络解决方案、下一代 9-1-1 紧急服务、卫星和空间通信技术以及云原生解决方案。我们独特的创新文化和员工赋权激发了我们对客户成功的不懈热情。Comtech 在美国和世界各地的技术走廊设有多个设施,利用其全球影响力、技术领先地位和数十年的经验来打造世界上最具创新性的通信解决方案。
在轨服务 (OOS) 为航天器 (s/c) 的加油、检查、维修、维护和升级提供了新的机会。随着技术的成熟和经济前景的改善,OOS 是未来航天增长的一个重要领域。这种拥堵促使航天器运营商探索如何利用 OOS。地球静止轨道 (GEO) 航天器的 OOS 任务目前正在进行中。这是由于为长寿命整体式化学推进 GEO 资产加油的商业案例已经结束。然而,除了技术演示外,目前还没有针对低地球轨道 (LEO) 航天器的 OOS 计划,因为它们的设计寿命较短且成本较低。随着行业将重点转向 LEO,为 LEO 航天器提供服务将变得尤为重要。为 LEO 星座设计 OOS 系统与基于 GEO 的系统不同,这种差异归因于 LEO 卫星的扩散、环境影响(J2 节点进动、阻力)和不同的星座模式。由于访问增加、分布式风险、灵活性和成本增加,LEO 中的卫星星座正变得更加分散。s/c 的 OOS 可以减少对子系统的要求,例如安全性和冗余需求。这些要求的减少将降低风险、降低成本并提高系统弹性。本文分析了扩散的 LEO 星座中 OOS 的好处。对几种 OOS 系统架构进行了建模;在每个系统架构中,模型将改变服务商数量、高度和轨道机动等质量。该模型的目标是优化成本、时间和效用,以生成 OOS 系统架构的权衡空间。
如果所有提议的星座都得以实现,那么在轨卫星数量将增加 40 倍。(截至 2022 年 3 月,轨道上有约 5000 颗卫星)。有行业分析师有衡量任何给定星座实现可能性的指标,所以我不会在这里重新发明轮子。(好奇的读者应该查看 Quilty Analytics [17]、NSR [18] 或 Pierre Lionnet [19] 等太空经济学家的作品,了解他们的启发式和排名。)我们不要关注可能性,而是回顾正在进行的结果。Starlink 已经部署了原计划的 4408 星座的近一半,OneWeb 已经部署了其原始星座的 2/3(但不幸的是,由于俄罗斯与乌克兰的持续战争期间 Roscosmos 拒绝提供联盟号运载火箭,他们失去了机会),而 Kuiper 项目已经获得了 ULA 的九枚 Atlas V 火箭用于其第一阶段的部署(很可能
卫星和航空航天系统领域的技术进步以及对更小但更高效的设计的需求为进一步研究纳米和皮卫星铺平了道路。事实证明,较小的系统在调查和测量局部区域大气的各种参数时更经济。本文旨在展示这样一种系统的设计。根据 2020 年 CanSat 竞赛的限制,我们设计了一颗罐子大小的卫星 (CanSat)。该设计的开发方式使其重量轻,但不会损害结构完整性。旨在使用的制造技术是使用聚乳酸 (PLA) 的 3D 打印,这可以提高定制灵活性并简化制造。模型卫星的应用领域从太空探索到天气预报。
卫星在非常低的地球轨道(VLEO)中的操作与航天器平台和任务设计的各种好处有关。至关重要的是,对于地球观察(EO)任务,降低高度可以使较小且功能较小的有效载荷能够实现与较高高度处的较大仪器或传感器相同的性能,并具有对航天器设计的显着好处。因此,对这些轨道的开发的重新兴趣刺激了新技术的发展,这些技术有可能在此较低的高度范围内实现可持续运营。在本文中,为(i)新型材料开发了系统模型,这些材料可以改善空气动力学性能,从而减少阻力或增加对原子氧侵蚀的抵抗力以及(ii)大气 - 呼吸电力推进(ABEP),以持续的阻力补偿或VLEO减轻。还讨论了可以利用VLEO中空气动力和扭矩的态度和轨道控制方法。这些系统模型已集成到概念级卫星设计的框架中,该方法用于探索这些新技术启用的未来EO航天器的系统级交易。对光学高分辨率航天器提出的案例研究表明,使用这些技术降低轨道高度的显着潜力,并表明与现场与现行现状的任务相比,与现行成本相比,可以节省多达75%的系统质量和超过50%的开发和制造成本。对于合成的孔径雷达(SAR)卫星,质量和成本的降低显示为较小,尽管目前据指出,目前可用的成本模型并未捕获该细分市场的最新商业进步。这些结果是维持VLEO运营所需的其他推进和权力要求,并指出未来的EO任务可以通过在此高度范围内运行而受益匪浅。此外,已经表明,只有已经开发的技术的适度进步才能开始剥削该较低的高度范围。除了减少资本支出和更快的投资回报率,降低成本和增加获得高质量观察数据的上游收益外,还可以传递给下游EO行业,以及各种商业,社会和环境应用领域的影响。
本论文是亚洲开发银行(ADB)区域技术援助“亚太数字发展基金”项目实施的一部分,该项目由韩国电子亚洲和知识伙伴基金共同资助。亚行领域专家和数字连通性顾问 John Garrity 和亚行可持续发展和气候变化部(SDCC)高级公共管理专家(数字化转型)Arndt Husar 领导了该工作论文的编写,SDCC 数字技术发展部主任 Thomas Abell 负责总体指导。在研究本工作论文的过程中,我们采访了一系列行业专家以了解背景情况,此外还查阅了公开文件,包括研究报告、媒体文章、学术论文、网络研讨会和视频。亚行谨感谢在此过程中与我们分享专业知识的所有人。
8. CS Clark. 等,“航天用商用镍镉电池:一种行之有效的低地球轨道卫星电力存储替代品”。载于:第五届欧洲空间电力会议论文集,西班牙塔拉戈纳,9 月 21 日至 25 日(1998 年)。
该出版物可以是以下几个版本之一:作者原件、已接受的手稿或出版商的版本。 / 本出版物的版本可能是以下版本之一:作者的出版前版本、手稿的接受版本或出版商的版本。如需获取出版商版本,请访问下面的 DOI 链接。/ 如需查看出版商版本,请使用下面的 DOI 链接。
摘要 2020 年 2 月,新西兰收集了大量近距离操作的地球静止卫星观测数据。这些测量是“幻影回声”实验的一部分,该实验是澳大利亚、加拿大、新西兰、英国和美国之间的合作活动。作为一个合适的案例研究,选择了任务扩展飞行器 1 (MEV-1) 和 Intelsat 901 之间的对接。在近距离操作的最后部分,两颗卫星位于太平洋上空,因此从新西兰可以看到。这些观测是在位于奥克兰北部旺阿帕劳阿半岛的国防技术局 (DTA) 空间领域意识 (SDA) 天文台进行的。所有图像均使用配备 FLI ML11002 CCD 相机的 11 英寸 (279 毫米) Celestron Edge HD 望远镜拍摄的。DTA 天文台最近已完全自动化,可以整夜连续收集数据。每个晴朗的夜晚,为了提高光度测定和天体测量的时间分辨率,我们经常会收集多达 1500 张图像,采样率约为每分钟 3 帧(每小时 180 帧)。基于 5 秒的曝光时间,卫星探测的视星等极限约为 15。实际上,只有当物体的星等约为 14 或更亮时,结果才是可以接受的。数据缩减是在 StarView 中执行的,这是 DTA 为 SDA 图像分析开发的专用软件工具。专门开发的数据分析算法用于恒星(恒星)图像和卫星(非恒星)图像的天体测量校准。基于视野中识别的大约 100-400 颗恒星,天体测量解决方案的典型 RMS 误差为 0.2 角秒。校准时使用了欧洲航天局的 GAIA 目录 (DR2),星等限制在 16 级以下。两颗卫星之间的相对天体测量随机测量误差通常小于 0.1 角秒,相当于太空中的 20 米以内。基于 GAIA G 波段的典型光度校准产生的 RMS 误差约为 0.1 – 0.2 个量级。同时,在良好的大气条件下,孔径光度测定的随机误差仅在 0.02 到 0.04 之间。利用 MEV-1 和 Intelsat 901 在近距操作期间获得的高质量测量结果,可以将观测到的天体测量和光度数据中的某些特征与任务期间执行的实际操作和其他关键事件关联起来。事实证明,现成的小孔径光学设备可成功用于监测地球静止轨道 (GEO) 上的近距操作并收集重要信息以供空间领域感知。
摘要 了解和预测废弃地球静止轨道卫星和火箭体的自旋状态演变对于空间态势感知、主动清除碎片、卫星维修、异常解析和小行星演化都具有重要意义。有明确的证据表明,许多废弃地球静止轨道卫星自旋状态主要由 Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) 效应驱动。YORP 效应是由于太阳辐射和热再发射扭矩引起的自旋状态演变。观测对于了解 YORP 如何驱动自旋状态以及验证动力学模型至关重要。不幸的是,从无处不在的光度光变曲线数据中提取自旋状态(自旋周期、转动角动量矢量、瞬时姿态)具有挑战性,因为地面望远镜无法解析地球静止轨道卫星。即使对于众所周知的物体,光变曲线反演也常常会在建模不确定性(即详细的卫星几何形状、反射特性)内产生几个或更多非常拟合的自旋状态解。此外,有强有力的证据表明,YORP 效应使卫星从匀速旋转转变为非主轴翻滚。这种翻滚状态使光变曲线反演过程更加复杂,因为翻滚运动由两个独立的周期驱动。为了帮助自旋状态分析,特别是翻滚情况,我们结合了在 Goldstone 深空通信中心获得的多普勒雷达观测数据。通过研究著名的退役 GOES 气象卫星系列,我们获得了所有目标的明确自旋周期估计值和非常窄的极点解,与光变曲线数据无关。我们注意到在两个月的时间内,自旋速度和极点方向发生了显著变化。这些发现与 YORP 驱动的演化一致。