洛克希德·马丁公司给这个团队下达了以下指令:“ExPO(行星海洋探索)系统(客户)计划在未来探索木卫二的海底海洋。”这是一项 A 阶段研究,旨在评估自主海底任务的可行性。这项研究将模拟团队预计将面临的一些关键电信挑战。这次探索任务将面临光时通信挑战、协调深空资产挑战和水下挑战。目前没有现有的导航辅助设备。唯一可用的资源将是轨道中继卫星,允许在车辆浮出水面时在规定的时间进行定期数据传输。除了在地面站和车辆之间中继上行/下行数据外,该轨道器没有其他功能。“提供早期能力的演示,为未来的木卫二探索任务做准备。本次演示将以地球为基础,并将成为外星飞行器操作概念的技术演示。构建一个探索 AUV(自主水下航行器),以在静止的水体中搜索、识别和报告多个感兴趣的物体。报告水体中已识别物体的相对位置和每个物体的下行图像数据。轨道中继卫星将允许有限的数据传输。本次演示仅允许 3 个上行/下行窗口,每个窗口持续时间为 5 分钟。这些窗口将在任务执行开始时、任务执行 20 分钟后和任务执行 40 分钟后出现。您将无法根据当前下行窗口的数据上传数据。从设置、执行到拆卸的任务操作必须在 90 分钟内完成,执行时间为 60 分钟。”解决这个设计问题将增强洛克希德马丁公司对自主水下航行器的知识体系,特别是此类航行器在复杂水下环境中航行的能力。该团队需要以 5000 美元的预算设计和创新这个问题。
摘要。火星上南纬 8.8°、西经 270.9° 处有一片包含 11 个星形沙丘和早期星形沙丘的沙丘场。在南纬 59.4°、西经 343° 处的陨石坑中发现了线性沙丘的例子。虽然很少见,但在火星表面并非没有在双向和多向风况下形成的沙丘种类。这两个沙丘场的出现为火星风况和沙供应的性质提供了新的见解,线性沙丘似乎是通过改变以前横向的风成沉积物形成的,这表明当地风向最近发生了变化。星形沙丘地区的 11 个沙丘显示出从新月形沙丘到星形沙丘的逐渐变化,因为每个连续的沙丘都向上移动到山谷,进入更复杂的风况。星形沙丘证实了 N. Lancaster (1989, Progress in Physical Geography 13 , 67–91; 1989, Sedimentology 36 , 27–289) 的模型,即星形沙丘的形成是通过将横向沙丘投射到复杂的、受地形影响的风力条件中而实现的。星形沙丘上有黑色条纹,这证明沙丘在 1978 年海盗 1 号轨道器获取相关图像时或前后处于活跃状态。这里描述的星形沙丘和线性沙丘位于火星表面的不同区域。与地球上的大多数星形沙丘和线性沙丘不同,这两个火星沙丘都是孤立出现的;它们都不是主要沙海的一部分。先前发表的火星大气环流模型结果表明,线性沙丘场出现的区域应为双峰风况,而星形沙丘出现的区域应为单峰风况。星形沙丘可能是由于沙丘受地形限制而导致风况局部复杂化的结果。局部地形对风况的影响在线性沙丘场中也很明显,因为在线性沙丘附近有横向沙丘,它们的出现最好解释为风通过上风口壁的地形间隙汇集。
太空自由空间光通信 (FSOC),或称激光通信,在带宽、尺寸、重量、功耗节省以及不受管制的频谱方面,比射频 (RF) 通信具有关键优势。与 RF 通信相比,理论和演示的激光通信系统在 SWaP 相似或相同的情况下,数据速率更高。新的太空网络架构,例如 SpaceX 和 Telesat 等公司目前正在部署的宽带星座,利用光学卫星间链路来提高系统总吞吐量并减少地面站数量,从而降低整体系统成本。除了 LEO 之外,Artemis 计划基础设施还包括猎户座太空舱和地球之间的光通信中继,最终计划扩展到月球轨道器以实现连续表面覆盖。尽管性能优势明显且在各个应用中的采用率不断提高,但最先进的 RF 通信系统目前的表现优于激光通信系统,部分原因是光通信系统无法支持多个同时链路。频率重用、访问方法和动态波束形成等技术使 RF 通信系统能够绕过带宽限制并与网络内的其他节点(例如多个地面站、用户终端等)建立同时链接。这项工作着眼于将此功能扩展到激光通信系统,评估支持多个同时光链路所需的技术,并量化网络配置中多用户激光通信的影响。我们开发了一个模型来模拟这种系统的性能,并根据现有模型和数据对其进行验证。然后将该模型应用于 LEO 和深空网络场景,该场景分析不同的访问方法、网络配置和终端技术,例如光纤放大器与光子集成电路。我们进行权衡研究以确定所提方法的局限性和约束。然后,我们根据关键性能参数为每种场景提出架构建议。例如,我们发现对于 LEO 情况,一组四颗 6U 立方体卫星可以在网状网络配置中通过波分多址实现 12 Gbps 的总系统吞吐量。此外,通过使用基于光子的收发器而不是基于光纤的收发器,可以额外节省约 2.5 倍的质量。
项目一开始,分级燃烧循环火箭发动机就被选定为基准推进系统,其燃烧室压力为 16 MPa [3]。全流量分级燃烧循环采用燃料富集的预燃室燃气轮机驱动氢泵,采用氧化剂富集的预燃室燃气轮机驱动液氧泵,是 SpaceLiner 主发动机 (SLME) 的首选设计方案。SpaceX 已经将雄心勃勃的全流量循环用于配备 Raptor 发动机的 Starship&SuperHeavy [39]。从某些方面来看,SpaceX 的这一概念与 SpaceLiner 想要成为的多任务可重复使用运载火箭类似 [9]。Raptor 发动机受到其星际任务的影响,因此使用了不同的推进剂组合 LOX-LCH4,这种组合有朝一日可能会在火星上现场生产。 SpaceLiner 7 要求助推级发动机的真空推力高达 2350 kN,海平面推力为 2100 kN,载客级则分别为 2400 kN 和 2000 kN。这些值对应于 6.5 的混合比,标称运行 MR 范围要求为 6.5 至 5.5。SpaceLiner 8 的配置目前处于初步定义阶段,其发动机推力与 SL7 保持类似的水平。这些推力足以满足超重型运载火箭的应用,并且与欧洲地面测试基础设施的限制兼容。法国目前正在研究一种部分类似的分级燃烧 LOX/甲烷发动机,推力范围从 2000 kN 到 2500 kN,名为 PROMETHEUS-X。[20] 助推级和载客级/轨道器 SLME 发动机的膨胀比已调整到各自的最佳值;而质量流量、涡轮机械和燃烧室在基准配置中假定保持不变 [18]。表 3 概述了通过循环分析获得的标称 MR 范围内的主要 SLME 发动机运行数据 [19]。表中列出了 SpaceLiner 两种不同喷嘴膨胀比(33 和 59)的性能数据。[19] 中显示了 SLME 的完整预定义运行范围,包括极端运行点。
美国宇航局的连续失败不容忽视。航天飞机发射的巨额开支使美国宇航局在国际市场上失去了竞争力,无法发射用于研究天气、国际通信系统或全球表面测绘等实用卫星。在航天飞机计划开始时,美国宇航局宣布,这笔巨额投资将很快得到回报,因为它将使太空发射比一次性助推器便宜得多。但 20 年后的今天,事实却截然相反:将每磅重物发射到近地轨道的成本比其他几个国家同时开发的无人一次性助推器高出许多倍。此外,灾难和险些发生的灾难清楚地表明,航天飞机不是一种安全的发射系统。除此之外,我们还目睹了一系列大规模的失败。哈勃太空望远镜耗资 20 亿美元,但其设计缺陷十分严重,在发射前,只需花费很少的额外费用,用相当简单、高精度的测量仪器就能发现。最近的修复任务能否成功还有待观察。但修复成本(6.3 亿至 12 亿美元)必定会降低人们对修复的热情,因为修复最多不能使仪器达到最初预期的性能。需要修复的独立严重故障数量之多,无法做出良好的预测。伽利略号探测木星及其卫星的任务耗资超过 10 亿美元,可能仍会取得一些成果,但展开航天器天线时发生的机械故障将阻止其将所有结果发回地球。现在,在一系列耗资巨大的航天飞机发射失败之后,另一个耗资近 10 亿美元的重大项目——火星轨道器,也莫名其妙地失败了。同样,一颗地球测绘卫星(Landsat 系列的延续)现在正无用地漂浮在某个未知的地球轨道上。考虑到巨大的成本,一个经过精心规划的项目会遭遇如此接二连三的失败吗?20 世纪 70 年代初,人们非常仔细、详细地讨论了规划太空研究项目的问题。一些外部顾问委员会(一些由 NASA 设立,一些由白宫科技办公室设立)提出了许多详细的建议,这些建议包括:
主教学大纲 EPET 201/ME 201:太空探索 课程描述 EPET 201 是一门关于太阳系探索科学与工程的入门课程。它涵盖科学仪器、任务轨迹、任务规划以及航天器设计的科学和工程约束。课堂项目需要研究,重点是书面交流。该课程仅在春季开设。 学分数 EPET 201 是一门三学分的讲座课程。它与 ME 201 交叉列出。 与课程的关系 EPET 201/ME 201 是 EPET 证书课程和机械工程(ME)中航空航天工程专业的组成部分。 先决条件 无 课堂接触时间 根据 COVID 规定,该课程以异步在线方式授课。COVID 之后,该课程可能继续在线提供或恢复常规的 F2F TR 学期安排。F2F 课程计划在正常课堂时间之外进行几次四小时的实地考察。课程详情 EPET 201/ME 201,太空探索,是 EPET 证书的入门课程,面向对太阳系探索背后的历史和技术以及其他行星体上可用资源感兴趣的任何科学或工程专业学生。本课程将向学生介绍过去 60 年来被派去探索太阳系各个行星体的各种机器人航天器、探测器和着陆器。课程主题将包括用于收集各种数据的各种仪器、行星任务的飞行计划(飞越、轨道器或着陆器)、针对不同热和辐射环境对航天器设计施加的工程约束以及这些任务的科学发现。学生将探索太空探索的历史、太阳系中不同行星体的关键属性(例如行星环境、大气条件、行星材料以及地质活动的程度和类型)以及传感器设计和操作的基础知识。行星探索和任务的另一个重要方面是团队合作,学生必须学会合作和共同努力才能实现目标。在本课程中,学生将以小组形式工作,设计他们自己选择的行星的假设任务,并详细了解太阳系中的物体以及调查该物体所需的航天器性能。研究团队由三名学生组成。教师将从一组有限的(和规定的)主题中提供作业,研究团队将选择一个主题。研究主题扩展了课堂上的主要讲座主题并支持课程学习目标。
UR 位于卡纳塔克邦班加罗尔。拉奥卫星中心 (URSC) 是印度空间研究组织的旗舰卫星技术中心。 URSC航天器技术包括航天器的构思、设计、研制、制造、测试、释放和集中绑定等。为履行其发展航天器的任务,该中心致力于开发与其活动有关的最先进的技术,并建立用于设计、开发、制造和测试航天器的基础设施。在过去四十年的时间里,URSC。成功建立了亚太地区最大的国内通信卫星系统之一印度国家卫星(ITS)系统和最大的地面观测卫星运行星座之一印度遥感(IRS)系统。一颗基于区域定位系统的独立印度卫星,由七颗导航卫星(Navik)组成,包括印度星座在内的战略性国家应用将很快投入运营。火星探测、月船一号、天文卫星等一些科学和探索任务引起了国际关注。 URSC美国宇航局未来承担的任务极具挑战性,并为开发尖端技术和建立先进的太空探索及其他基础设施提供了机会。位于卡纳塔克邦班加罗尔的 UR Rao 卫星中心 (URSC) 是印度空间研究组织的卫星技术领导中心。 URSC 在航天器概念化、设计、开发、制造、测试、发射和在轨管理方面处于航天器技术的前沿。作为航天器开发任务的延续,该中心致力于开发与其活动相关的尖端技术以及为航天器的设计、开发、制造和测试而建立的基础设施。经过四十年的努力,URSC成功建立了印度国家卫星(INSAT)系统,这是亚太地区最大的国内通信卫星系统之一,以及印度遥感(IRS)系统,这是运行中最大的地球观测卫星星座之一。印度卫星导航系统 (NAVIC) 是一个独立的印度卫星区域定位系统,拥有七颗卫星,可用于重要的国家应用,即将投入运营。月船一号、火星轨道器任务、月船三号、阿迪亚-L1 和 Astrosat 等空间科学任务获得了全世界的广泛赞誉,使印度在全球占据了一席之地,同时激励了下一代。 URSC 未来承担的任务极具挑战性,并为开发创新技术、建立太空探索及其他领域所需的先进基础设施提供了机会。
地月自主定位系统技术操作和导航实验 (CAPSTONE) 任务由 NASA 与科罗拉多州威斯敏斯特的 Advanced Space, LLC 合作开发。这项技术演示任务是月球周围近直线晕轨道 (NHRO) 操作的探路者。NHRO(近月点 = 3,200 公里;远月点 = 70,000 公里)是 NASA 的 Artemis Gateway 的预定轨道,Artemis Gateway 是一个计划在月球轨道上运行的小型载人空间站。CAPSTONE 任务将验证模拟并确认 Gateway 的运行计划,同时验证 Gateway 动力和推进元件的导航和驻留要求的性能。因此,该任务将为 NASA、商业和国际任务提供在苛刻的轨道范围内运行的运行经验。CAPSTONE 任务由 Terran Orbital Corporation 开发、集成和测试的 12 单元 (U)+ CubeSat 组成,它携带一个有效载荷通信系统,能够与 NASA 的月球勘测轨道器 (LRO) 进行交联测距。CAPSTONE 包含一个芯片级原子钟 (CSAC),用于与 NASA 的深空网络进行单向测距实验,一个专用的有效载荷飞行计算机用于软件演示,以及一个摄像头。此次发射由 NASA 的发射服务计划协调,由 Rocket Lab 在其 Electron 运载火箭上使用其 Photon 上面级部署 CAPSTONE 航天器。该任务于 2022 年 6 月 28 日发射。CAPSTONE 航天器从光子级部署,经历了大约 4 个月的高度燃料效率转移阶段,于 2022 年 11 月 13 日进入 NRHO,进行为期六个月的主要任务阶段。该任务目前处于为期十二个月的技术增强运营阶段。CAPSTONE 技术演示任务由 Advanced Space, LLC 领导。航天器开发和任务运营由加利福尼亚州欧文市的 Terran Orbital Corporation 进行。CAPSTONE 任务的显著成就包括展示 NHRO 的可达性;验证 NHRO 环境中的关键操作概念;为未来月球运营的商业支持奠定基础;并加速实现地月自主定位系统 (CAPS) 提供的点对点导航功能。CAPSTONE 任务由 NASA 的小型航天器技术 (SST) 计划资助,该计划是 NASA 空间技术任务理事会的几个计划之一。该计划的目的是开发和演示增强和扩展小型航天器能力的技术,特别注重通过使用小型航天器实现新的任务架构,扩大小型航天器到达新目的地的范围,并增强未来
首席军士长 Phillip G. Winkelmann 是消防和紧急服务职业现场经理,总部设在华盛顿特区五角大楼的美国空军。他为空军土木工程师提供建议,帮助他们利用、发展和准备 5,689 名消防员。此外,首席军士长 Winkelmann 还制定职业领域的入职要求,监测职业领域的健康和人员配备,并就人事政策和计划提供意见。最后,他与 MAJCOM 准备部门进行协调,并担任国防部消防学院的顾问,担任高级士兵,指导所有 3E7X1 人员的部队发展和职业发展机会。首席军士长 Winkelmann 出生于华盛顿州史蒂文斯湖,于 1996 年 6 月加入空军。他的背景包括中队、大队、联队、作战司令部和主要司令部级别的领导职务。他的任务包括华盛顿、新墨西哥、马里兰、亚利桑那、新泽西、科罗拉多、韩国、意大利和英国的基地,并被派往沙特阿拉伯、科威特、伊拉克、阿富汗、卡塔尔和阿拉伯联合酋长国 14 次,以支持南方守望、持久自由、伊拉克自由、新黎明、坚定决心、自由哨兵、斯巴达盾牌和坚决支持行动。在担任现职之前,他曾担任亚利桑那州卢克空军基地第 56 土木工程中队消防队长。教育经历 1996 年 德克萨斯州拉克兰空军基地基本军事训练 2001 年 华盛顿州费尔柴尔德空军基地飞行员领导学校 2005 年 佛罗里达州肯尼迪航天中心航天飞机轨道器救援课程 2007 年 德国卡蓬空军基地士官学院 2008 年 阿拉巴马州麦克斯韦空军基地事故指挥官课程 2008 年 空军社区学院消防科学副学士学位 2009 年 空军大学高级士官非驻校 2010 年 联合部队参谋学院高级士兵联合专业军事教育课程 2011 年 空军技术学院消防应急服务飞行长课程 2012 年 阿拉巴马州冈特空军基地高级士官驻校 2013 年 空军社区学院专业经理人认证 2015 年 空军技术学院土木工程主管课程2019 年获得美国军事大学消防管理理学学士学位 2019 年在阿拉巴马州麦克斯韦尔-冈特基地参加首席领导力课程 任务 1. 1996 年 6 月 - 1996 年 9 月,受训人员,基础军事训练,德克萨斯州拉克兰空军基地 2. 1996 年 9 月 - 1996 年 12 月,学生,消防,德克萨斯州古德菲洛空军基地
2.0-1 总体项目管理背景下的 SE..................................................................................................................................... 4 2.1-1 系统工程引擎..................................................................................................................................................... 5 2.2-1 本手册随附的 NASA 海报大小的飞行和地面系统项目生命周期流程的微型概念化............................................................................................. 6 2.3-1 SE 引擎跟踪图标............................................................................................................................................. 8 2.3-2 产品层次结构,第 1 层:第一次通过 SE 引擎.................................................................................................... 9 2.3-3 产品层次结构,第 2 层:外部油箱.................................................................................................................................... 10 2.3-4 产品层次结构,第 2 层:轨道器............................................................................................................................. 10 2.3-5 产品层次结构,第 3 层:航空电子系统..................................................................................................................... 11 2.3-6 产品层次结构:SE 引擎的完整系统设计流程............................................................................................. 11 2.3-7 产品运行阶段(阶段 E)典型活动模型..................................................................................................... 14 2.3-8 重新进入 SE 引擎的新产品或升级产品..................................................................................................... 15 2.5-1 非主导设计的包络面......................................................................................................................................... 16 2.5-2 包括不确定性在内的多个设计概念所获得的结果估计.................................................................... 17 3.0-1 NASA 计划生命周期.................................................................................................................................... 20 3.0-2 NASA 项目生命周期.................................................................................................................................... 20 3.10-1 典型的 NASA 预算周期.................................................................................................................... 29 4.0-1 系统设计过程之间的相互关系............................................................................................................. 31 4.1-1 利益相关者期望定义过程..................................................................................................................... 33 4.1-2 利益相关者期望的产品流程............................................................................................................................ 34 4.1-3 科学任务的典型 ConOps 开发..................................................................................................................... 36 4.1-4 相关的端到端操作架构示例......................................................................................................................... 36 4.1-5a 在生命周期早期开发的月球出击时间表示例......................................................................................................... 37 4.1-5b 在生命周期早期开发的月球出击 DRM 示例......................................................................................................... 37 4.1-6 科学任务生命周期后期更详细、更综合的时间表示例......................................................................... 38 4.2-1 技术要求定义流程.................................................................................................................................... 40 4.2-2 功能、操作、可靠性、安全性和专业要求的特征......................................................................................... 43 4.2-3 需求的流程............................................................................................................................................. 46 4.2-4 科学指向要求的分配和流程............................................................................................................. 47 4.3-1 逻辑分解过程................................................................................................................................ 49 4.3-2 PBS 示例............................................................................................................................................... 52 4.3-3 功能流程框图示例................................................................................................................................ 53 4.3-4 N2 图示例............................................................................................................................................. 54 4.4-1 设计解决方案定义过程....................................................................................................................... 55 4.4-2 逐次改进原则.................................................................................................................................... 56 4.4-3 定量目标函数,取决于生命周期成本和有效性的各个方面.................................................... 58 5.0-1 产品实现............................................................................................................................................. 71 5.1-1 产品实施过程............................................................................................................................................. 73 5.2-1 产品集成过程............................................................................................................................................. 78 5.3-1 产品验证过程..................................................................................................................................................................................................................... 84 5.3-2 自下而上的实现过程................................................................................................................................... 90 5.3-3 科学卫星任务端到端数据流示例...................................................................................................................... 94 5.4-1 产品验证过程......................................................................................................................................................... 99 5.5-1 产品转换过程.........................................................................................................................................................106 6.1-1 技术规划过程.........................................................................................................................................................112 6.1-2 网络进度表的活动箭头图和优先顺序图.........................................................................................................116 6.1-3 甘特图.........................................................................................................................................................................118 6.1-4 系统、PBS 和 WBS 之间的关系.............................................................................................................................123 6.1-5 WBS 开发错误示例.....................................................................................................................................125 6.2-1 需求管理6.3-1 接口管理流程................................................................................................................................131...........................118 6.1-4 系统、PBS 和 WBS 之间的关系.....................................................................................................................123 6.1-5 WBS 开发错误示例.....................................................................................................................................125 6.2-1 需求管理流程.......................................................................................................................................131 6.3-1 接口管理流程.......................................................................................................................................136...........................118 6.1-4 系统、PBS 和 WBS 之间的关系.....................................................................................................................123 6.1-5 WBS 开发错误示例.....................................................................................................................................125 6.2-1 需求管理流程.......................................................................................................................................131 6.3-1 接口管理流程.......................................................................................................................................136