总访问轨道(M)21410 19269 23551不同轨道类型(CEMP)的长度总和,+/- 10%现有轨道长度(M)5870 5283 6457 CEMP中标明的现有轨道长度,+//- +/- +/- +/- 10%浮动路的访问轨道(M)460 414 506 Pell fliish flas +/ CEMP浮动道路深度(M)0.43 0.387 0.473计算预期的条形除以总道路表面(技术附录11.3 OPMP)+/- 10%排水的浮动道路长度(M)0 0 0 0 0 0标准最佳实践,根据SNH 2010,根据PEAT的浮动道路' - 排水管' - 排水系统会导致解决问题。+/- 10%与浮动道路相关的排水平均深度(M)0.2 0.18 0.22参见Corr Chnoc施工图,图9,+/- +/- 10%的访问轨道长度为挖掘路(M)15080 13572 16588 +/- 10%+/- 10%
摘要。由于无序量子点的强轨道量子化,在标准 p 型硅晶体管中可以实现单空穴传输和自旋检测。通过使用充当伪栅极的阱,我们发现了表现出泡利自旋阻塞的双量子点系统的形成,并研究了漏电流的磁场依赖性。这使得可以确定空穴自旋状态控制的关键属性,其中我们计算出隧道耦合 tc 为 57 µ eV,短自旋轨道长度 l SO 为 250 nm。使用无序量子点时,界面处表现出的强自旋轨道相互作用支持电场介导控制。这些结果进一步激励我们,可以使用易于扩展的平台(例如行业标准硅技术)来研究对量子信息处理有用的相互作用。
摘要:众所周知,在现代微电子和纳米电子学中,薄膜结构被广泛用作栅极电介质、钝化层、膜等。本文研究了单晶硅晶片上互连脉冲加热过程中氧化硅薄子层中形成裂纹的问题。本文旨在研究表面热冲击源对薄膜裂纹形成的影响,并详细研究了 SO2 薄膜中裂纹形成的各个方面。在硅衬底-氧化硅子层-铝膜 (Si-SiO 2 -Al) 多层结构上对所做的估计进行了实验验证。作为衬底,使用了磷掺杂的硅单晶晶片,取向为 (111) 方向,电阻率在 = 0.1 Ω . сm 范围内。作者研究了表面金属化层加热的硅晶片(Al-Si 系统)和氧化硅晶片(Al-SiO2 系统)的温度场,既有点热源的情况,也有长矩形金属化路径的情况(假设轨道长度明显超过其宽度)。计算结果表明,金属化路径(宽度 75 μm)横向的温度分布是不均匀的。结果还表明,与 SiO2 膜相比,硅中出现的机械应力水平不足以在热冲击源附近形成裂纹。这是因为硅的抗拉强度高于氧化物。
摘要。在基于气体的探测器中,几兆电子伏范围内的电子轨道的能量分辨率远低于固有极限。此类事件的延伸轨道长度需要较大的遏制体积,并且通常需要多线比例增益结构来捕获大面积的信号。确定准确的增益图和稳定的比例增益的困难加剧了这一挑战。作为替代方案,由于超低噪声多通道集成电路设计的最新进展,现在似乎可以无需雪崩倍增直接感测轨道图像,至少在电离密度足够高的情况下是如此。在时间投影室 (TPC) 中,由于可以控制边缘效应,因此轨道在空间中的 3-D 定位也应允许更好的能量分辨率。一个特别合适的应用是在高压 136 Xe 气体中寻找无中微子的双贝塔衰变。在衰变的 2.48 MeV Q 值下,使用直接电离成像可能可以实现 ~0.5% FWHM 的能量分辨率。虽然仅比由激发和电离之间的波动设定的固有极限 0.25% FWHM 差两倍,但稳定性考虑表明直接电离成像可以达到这种性能水平,其中电子噪声是主要贡献。
摘要:众所周知,在现代微电子和纳米电子学中,薄膜结构被广泛用作栅极电介质、钝化层、膜等。本文研究了单晶硅晶片上互连脉冲加热过程中氧化硅薄子层中形成裂纹的问题。本文旨在研究表面热冲击源对薄膜裂纹形成的影响,并详细研究了 SO2 薄膜中裂纹形成的各个方面。在硅衬底-氧化硅子层-铝膜 (Si-SiO 2 -Al) 多层结构上对所做的估计进行了实验验证。作为衬底,使用了磷掺杂的硅单晶晶片,取向为 (111) 方向,电阻率在 = 0.1 Ω . сm 范围内。作者研究了表面金属化层加热的硅晶片(Al-Si 系统)和氧化硅晶片(Al-SiO2 系统)的温度场,既有点热源的情况,也有长矩形金属化路径的情况(假设轨道长度明显超过其宽度)。计算结果表明,金属化路径(宽度 75 μm)横向的温度分布是不均匀的。结果还表明,与 SiO2 膜相比,硅中出现的机械应力水平不足以在热冲击源附近形成裂纹。这是因为硅的抗拉强度高于氧化物。
印刷电路板(PCB)设计的规模已大大提高,现代商业设计具有10,000多个组件。但是,放置过程大大依赖了需要数周完成的手动努力,强调了对自动PCB放置方法的需求。PCB放置的挑战来自其灵活的设计空间和有限的路由资源。现有的自动PCB放置工具在质量和可扩展性方面取得了有限的成功。相比之下,非常大规模的集成(VLSI)放置方法已被证明是可扩展的,对于具有数百万个细胞并提供高质量结果的设计是可扩展的。因此,我们提出了柏树,这是一种受VLSI启发的可扩展的,加速的PCB放置方法。它结合了适合PCB布局的量身定制的成本功能,约束处理和优化的技术。此外,对现实和开源基准的需求不断增长,以(1)在工具和(2)建立Performance基准之间进行有意义的比较以跟踪PCB放置技术的进度。为了解决这一差距,我们提出了一个从实际商业设计中合成的PCB基准套件。我们使用基准套件来评估针对最先进的商业和学术PCB放置工具的方法。我们的方法在提出的基准测试标准上证明了1-5.9倍的可路由。对于完全路由的设计,赛普拉斯达到了1-19.7×较短的路由轨道长度。随着GPU加速度,柏树在运行时间内最多可提供492.3倍的加速。最后,我们展示了对真实商业设计的可扩展性,这是现有工具无与伦比的功能。