大转子疼痛综合征 (GTPS) 被定义为触诊转子周围区域时出现髋部外侧疼痛。疼痛可沿大腿向下辐射至髋部后部,但很少辐射至膝盖远端。以前,疼痛的原因被完全归因于转子滑囊炎。然而,疼痛的来源可能包括转子滑囊、臀中肌和臀小肌腱以及髂胫束。涉及 GTPS 的研究中,MRI 检查显示转子滑囊炎是一种罕见的发现,并且并非单独发现;当发现时,滑囊扩张与臀肌病变共存。2 最近的研究表明,臀肌腱病是髋部外侧疼痛的主要原因。2 GTPS 发病率最高通常发生在 40 至 60 岁之间,女性与男性的比例为 4:1。6
旋翼在地面效应 (IGE) 下运行产生的流场复杂且不稳定,还可能与地面相互作用。这种相互作用的结果是旋翼诱导流从垂直 (下洗) 转变为径向流 (外洗)。由于高流出速度产生的力量,该流场可能成为地面人员、设备和景观的风险源。此外,在出现降水或白化的情况下,流场可能与松散的沉积床相互作用,将飞机周围的颗粒物抬升。预测外洗对于直升机 IGE 操作的安全至关重要。降水通常会影响飞机正下方的活动(如搜索和救援行动),而外洗会在着陆和起飞期间影响周围环境,如人员、设备和结构。如前所述,当旋翼机在地面附近运行时,可能会发生降水和白化,这是由于旋翼尾流与松散沉积床的颗粒(如沙子、雪等)相互作用造成的。这种相互作用最终可能导致颗粒物从地面升起并被夹带进气流中。在沙漠地区或雪地中飞行时,旋翼机周围夹带的颗粒数量可能会非常多,形成云状。这种在飞机周围移动的颗粒云主要影响飞行员的视觉
我们计算了在其基态相互作用的线性转子系统的第二个rényi纠缠熵,以衡量连续旋转自由度的纠缠。熵是根据两分量子系统中子系统的纯度而定义的,并且为了计算它,我们比较了基于路径积分基态(PIGS)形式的两个采样集合。该方案以复制技巧为中心,并由Hastings等人在这种情况下开发的比率技巧。[物理。修订版Lett。 104,157201(2010)]。 我们研究了一个由一维的晶格上的线性量子转子组成的系统,通过各向异性偶极 - 偶极电位相互作用。 猪估计的基态第二rényi熵是针对来自密度基质重质化组的基于各种相互作用强度和系统尺寸的基准测试的。 我们发现,熵的增长会增加相互作用强度,对于足够大的系统,它似乎在原木附近平稳(2)。 我们认为,许多强烈相互作用的转子的限制情况类似于在猫状态下的两级粒子的晶格,其中人们自然会发现log(2)的纠缠熵。Lett。104,157201(2010)]。我们研究了一个由一维的晶格上的线性量子转子组成的系统,通过各向异性偶极 - 偶极电位相互作用。猪估计的基态第二rényi熵是针对来自密度基质重质化组的基于各种相互作用强度和系统尺寸的基准测试的。我们发现,熵的增长会增加相互作用强度,对于足够大的系统,它似乎在原木附近平稳(2)。我们认为,许多强烈相互作用的转子的限制情况类似于在猫状态下的两级粒子的晶格,其中人们自然会发现log(2)的纠缠熵。
摘要:转子的稳定悬浮是磁悬浮控制动量陀螺仪的重要要求之一,陀螺效应是转子的一个显著特性。为研究转子结构与陀螺效应之间的关系,引入惯性比的概念,研究惯性比与陀螺效应之间的关系。为提高转子的悬浮稳定性,在建立转子悬浮系统模型的基础上,研究了交叉反馈控制(CFC)方法,指出转子在旋转作用下,仅采用分布式PID控制无法使转子悬浮稳定。为更有效的抑制陀螺效应并在更宽的转速范围内维持稳定悬浮,提出了一种带预调增益的CFC方法。研究结果验证了所提出的CFC方法能有效抑制陀螺效应引起的转子振动。试验结果还表明,较大的惯性比有利于抑制转子陀螺效应,并能在一定程度上提高悬浮稳定性。此外,通过优化惯性比,设计了MSCMG转子,角动量为200 Nms。本文对高速转子的机械设计和稳定悬浮研究具有重要的指导意义。
通讯总监:Yves Barillé,编辑总监:Pascale Fleury,主编:Belén Morant,图像设计:Jérôme Deulin,翻译:Burton, Van Iersel & Whitney,慕尼黑。出版方:,印刷方:SPI,N° ISSN 1169-9515(版权所有 Airbus Helicopters 2015,保留所有权利)。A-Star、Alouette、Arms、AS332、AS350、AS355、AS365、AS532、AS550、AS555、AS565、Bluecopter、Blue Edge、Blue Pulse、BK117、B0105、Cigalhe、Colibri、Cougar、Dauphin、Djinn、Dolphin、EC120、EC130、EC135、 EC145、EC155、EC175、EC225、EC635、EC645、EC725、Eco-Star、Ecureuil、E-Techpub、Eurocoat、Fenestron、Fennec、Frelon、Gazelle H160、Helionix、Horizon、Indoc、Keycopter、Lama、M’arms、Miniarms、Minihums、Panther、Puma、Sarib、Sirina、球面柔性, Starflex、Steadycontrol、Stylence、Super Puma、Thinking without limits、Tiger、Tigre、Twin-Star、Vemd、Vertivision、VSR700 是空中客车直升机公司的商标。杂志采用 Triple Star 印刷,纸张来自可持续森林。
目录 章 页码 1. 介绍................................................................................................................ 1 2. 理论................................................................................................................... 6 2.1 直轴和交轴................................................................................................... 6 2.2 等效电路................................................................................................... 8 2.3 功率角特性................................................................................................... 9 3. 设计参数...................................................................................................... 11 3.1 气隙...................................................................................................... 11 3.2 磁通密度...................................................................................................... 12 3.3 定子和励磁绕组...................................................................................... 12 3.4 波形...................................................................................................... 13 3.5 电抗...................................................................................................... 13 3. 转子设计............................................................................................................. 15 4.1 机械...................................................................................................... 15 4.1.1 励磁绕组.
图 5 展示了基本喷射点火几何形状的放大视图。先导喷射器提供少量燃料(不到总燃料流量的 5%)并保持每冲程恒定的体积。在火花塞辅助喷射器区域产生化学计量混合物,用于与燃料类型无关的火花点火条件。然后,主喷射器可以将根据负载需求而变化的燃料流量引入辅助启动的燃烧中。主喷射器和辅助喷射器的这种分离允许优化起燃区中的条件。
使用 1/10 比例 CH-47B/C 型转子的风洞试验数据研究失速条件下的转子行为,该风洞试验提供了一组测试条件,从未失速到轻度失速到一些深度失速条件,涵盖了很宽的前进比范围。在风洞中测量的转子性能与 NASA/Army UH-60A 空气载荷计划期间测量的主转子性能相似,尽管这两个转子完全不同。分析 CAMRAD II 已用于预测转子性能和载荷。全尺寸翼型试验数据针对雷诺数效应进行了校正,以便与模型比例转子试验进行比较。计算出的功率系数与雷诺数校正翼型表的失速以下测量值显示出良好的相关性。计算中使用了各种动态失速模型。波音模型显示升力在低推进比时增加,而 Leishman-Beddoes 模型在 µ = 0.2 时显示扭矩相关性优于其他模型。然而,动态失速模型通常对转子功率和扭矩预测的影响很小,尤其是在较高的推进比下。