印度科学技术部 (DST) 纳米和先进材料司 (NAMD) 与 JNCASR 合作,帮助印度研究人员和科学家利用德国 DESY 的 PETRA III 全球同步加速器设施应对关键科学挑战。该计划旨在促进印度科学家与 DESY 之间的合作。作为该计划的一部分,研讨会将以讲座的形式介绍 DESY 同步加速器设施的基本原理及其多种应用,目的是吸引新用户有效利用这些先进的大规模研究资源。
ZEUS 多拍瓦激光设施的首次实验。亚特兰大——希腊神宙斯以控制闪电的能力而闻名,闪电是一种等离子体现象,当带负电的电子与构成空气的原子中的带正电的离子分离时,就会在大气中发生。强激光可以在实验室中引起同样的电荷分离,将原子分离成电子和离子的混合物,称为等离子体,等离子体的速度如此之快,以至于等离子体以相对论速度移动。加州大学欧文分校的研究人员在密歇根大学安娜堡分校的新 ZEUS 多拍瓦激光设施上进行首次正式实验时,探索了如何控制这些“激光诱导闪电”。了解这种相互作用中的极端物理现象本身就很有趣;然而,控制激光焦点极端条件的能力将使微型粒子加速器成为现实。如果粒子加速器体积小且价格低廉,它们可以用于医学成像、放射性同位素生产、核废料清理、先进制造等应用。粒子加速器也是至关重要的,因为它是 X 射线的强光源。目前,我们建造的粒子加速器大小相当于足球场大小,用作 X 射线机,既耗时又昂贵。加州大学研究人员利用 ZEUS 激光器证明,从激光和拇指大小的气体中可以获得类似的 X 射线。ZEUS 由美国国家科学基金会资助,正在努力成为美国最强大的激光器。在满功率下,它将能够在一次激光爆发中提供高达 3 拍瓦的功率,即超过三百万亿瓦的功率。相比之下,整个美国电网提供的功率约为太瓦,比 ZEUS 少一千倍,而 LED 灯泡仅使用约 5 瓦的功率。ZEUS 成为现实的秘诀是啁啾脉冲放大技术,该技术获得了 2018 年诺贝尔物理学奖。虽然激光非常强大,但它只能持续很短的时间,因此爆发所需的能量相对较少。在加州大学欧文分校的这项实验中(图 1),激光功率有所增加,以帮助更好地理解电子加速的物理原理与发射的 X 射线之间的关系,产生的 X 射线比牙科 X 射线亮 1000 万倍以上。
参考文献1。cr birk和al。J Power Sounce 341(2016),pp。373-386。2。f lin和al。Rev 117:21(2017),pp。13123-13。s lou和al。Accora搁置2:12(2021),pp。1177-14。和Preger和Al。J位置167:12(2020)。5。z ruff和al。J攀登168(2021)。6。Jl White和Al。J16508-16514。7。g Zan和al。J Mater Chem A 9(2021),pp。19886-18。g Qian和al。SCI REP 2:9(2021),pp。100554。9。g Qian和al。能量良好(2022)2200255。10。c chen和al。ACTA 305(2019),pp。65-71。11。g Zan和al。PNAS 119:29(2022)。PNAS 119:29(2022)。
深索特恢复的图像的全范围。Zeiss DeepScout在大型FOV量中可以在各地提供高分辨率。在低分辨率下捕获一个较大的视野,并针对一个小区域。高分辨率扫描目标。 使用DeepScout以高分辨率恢复全卷。 现在,您可以以所需的分辨率检查整个样本,以识别,量化甚至分割样本多个区域的缺陷。高分辨率扫描目标。使用DeepScout以高分辨率恢复全卷。现在,您可以以所需的分辨率检查整个样本,以识别,量化甚至分割样本多个区域的缺陷。
引言NEX CG II是多元元素分散X射线荧光(EDXRF)光谱仪,可在许多行业中执行快速定性和定量的痕量元素分析和地址需求。这种下一代高端光谱仪是痕量重金属和卤素分析的理想选择,这是对多个部门的需求增加。这些功能使NEX CG II特别适合于环境监测,工业废物应用,再生材料,电子组件,药物材料,化妆品等。此外,NEX CG II通过几乎所有基质中的铀(U)提供了非破坏性分析,从油和液体到固体,金属,聚合物,粉末,粉末,糊状,涂料和薄项。与常规EDXRF光谱仪不同,nex
图。3:2d XRD数据投影到2θ -ϕ(方位角角)空间被1D方位角集成的数据叠加。使用1S集成时间获取数据。(a)和(d):静态压缩后的样品的结构和纹理,在300 K.(b)和(e)时:分别在HP加热后最高为1360 K和1360 K和1450 K时发生的结构和纹理变化。(c)和(f):动态加载后样品的结构,然后淬火至300 K;在这两种情况下,最终的铁结构都对应于ϵ相。
钛酸盐,SRTIO 3(STO)表现出独特而令人困惑的电子和结构特性,这些特性在过去50年中激发了其广泛的研究[1-4]。STO的介电常数是偶然的,在低温下几乎在没有铁电性发作的情况下以量子隐式性的方式发作[5]。薄膜中的应变或交互作用可以稳定铁电性[6,7]。电子掺杂的STO还以记录 - 低载体浓度n> 〜3×10 17 cm-3表现出超导性(SC),对应于小于2 MeV的费米能[5,8]。实验表明s波参数的s波符号[9,10]。此外,与Sto中与量子副型相关的大晶格波动暗示了SC的常规声子机理。但是,Sto中的SC不能用Bardeen-Cooper-Schrieffer(BCS)理论的通常的Migdal-EliAshberg扩展,这依赖于由弱化的拉力响应介导的电子吸引力[11,12],因为STO中的Fermi Energy与Phonon中的Fermi Energy相比是可比的。临界温度t c对掺杂的圆顶样依赖性与高温超导体(HTSC)相似,尽管最大t c = 0。4 K [15,16]。 此外,隧道调查表明多波段SC,类似于一些非惯性的超导体,例如鲜明an和pnicties [17]。 尤其是同时发生的铁电扭曲是在Sto [23]中增强SC还是抑制它[19,24]。4 K [15,16]。此外,隧道调查表明多波段SC,类似于一些非惯性的超导体,例如鲜明an和pnicties [17]。尤其是同时发生的铁电扭曲是在Sto [23]中增强SC还是抑制它[19,24]。各种提出的机制包括远距离电子音波相互作用[18],软骨模式[19],Intervalley Phonons [20]和量子频道波动[21,22],但Sto中SC的机理仍在争论中。在这里,我们对传统带中的Bloch状态进行了紧密结合分析,该分析可能会阐明STO及其Het-腐蚀性的令人困惑的电子特性。在下一部分中,我们表明,在微不足道的自旋轨道耦合(SOC)的极限中,源自Ti的三个T 2 g轨道的下带是高度各向异性的。在第三节中,我们表明,在传统带的底部,这些状态被SOC混合到Kramers Doublet中,总矩j = 5/2。< / div。在第四节中,我们利用Hubbard模型表明
演讲者Daniel Nino(Xanadu)Elie Mounzer(DFKI)Caitlin Jones(Basf)Max Haeberlein(IQM)Roman Orus(多重计算)Iraitz Montalban(falcondale llc)Carsten brank AstridBöttcher(q.ant)Elisabeth Wagner(bearingpoint)SabineMüller(Fraunhofer Itwm)Ali Moghiseh(Fraunhofer ITWM)