本论文中介绍的工作是在欧洲核子研究中心 LHCb-RICH 子探测器 Ia 阶段升级计划的背景下完成的。在第二次大型强子对撞机 (LHC) 长期关闭期间(预计在 2019 年至 2020 年),LHCb 探测器将升级为以更高的速度执行数据读出,与 LHC 束流穿越率 40 MHz 同步。这涉及完全重新设计 LHCb 读出架构及其子探测器电子设备。LHCb-RICH 探测器上的电子设备将嵌入新的传感器、多阳极光电倍增管 (MaPMT) 和带有辐射硬 ASIC 的新前端电子设备 - CLARO 集成电路。CLARO 读取并转换为数字触发器的 MaPMT 模拟信号将输入到基于 SRAM 的商用级现场可编程门阵列 (FPGA) 中。后者具有反熔丝 FPGA 技术作为备用解决方案。由于这些类型的 FPGA 容易受到辐射引起的故障影响,因此在将这些设备用于目标应用之前,必须在等效辐射环境中测试这些设备。因此,组织了一场激烈的活动,以便在辐射环境中使用不同粒子种类的光束测试和鉴定这些设备:混合场(高中子和强子通量)、质子、离子和 X 射线。在辐射环境中使用时,FPGA 可能会以各种方式发生故障。一些故障是纯软件故障,要么在配置内存中,要么在用户设计电路中,它们表现为位翻转,可能会影响设备的整体功能。纯硬件故障更难缓解,它们表现为 FPGA 中的高电流状态,有时通过电离辐射增加电流消耗。为每个测试的 FPGA 设计了专用的实验装置,以确保正确测试并充分评估辐射响应。为了帮助降低错误率,采用了几种缓解技术并测量了它们的效率。本论文详尽介绍了辐射测试的整个准备过程、结果以及将结果外推到 LHCb-RICH 案例。
ATSP-TDD 2022 年 4 月 5 日 单位调动官部署规划课程备忘录 8C-F17/553-F5 (MC) 主题:欢迎虚拟单位调动官部署规划课程学生的信 1. 谨代表运输学校助理指挥官 Timothy R. Zetterwall 上校和运输管理培训部 (TMTD) 负责人 Trenton Lykes 先生,欢迎并祝贺大家参加单位调动官部署规划课程 (UMODPC)。 2. 作为根据命令任命的单位调动官,您将担任指挥官的高级顾问,负责单位战略部署或通过地面方式的单位调动。本课程将为您提供单位部署所需的工作知识和单位调动官的职责。 3. 地点:这将是一门虚拟课程,将通过 Army 365 Microsoft Teams 进行。 Army Teams 365 是当前的虚拟训练平台,只能通过国防部信息网络 (NIPRNet) 或带有 CISCO AnyConnect 虚拟专用网络 (VPN) 的政府提供的设备 (GFE) 访问。参加此在线课程需要摄像头和麦克风。如果您在家上课,则必须拥有已建立的 IT 支持网络,以便在遇到 TEAMS 或计算机问题时联系。讲师不会排除 TEAMS 或软件故障。如果您在建立 TEAMS 帐户时遇到问题,请联系您的 G6 人员或陆军企业服务台 (AESD),电话 1-866-335-2769。4. 时间:培训将在课程期间于美国东部时间 08:00 开始。5. 参加前:空中调动设备 (EPAM) 模块 1 和模块 2 是先决条件,必须在单位调动军官部署规划课程 (UMODPC) 开始日期之前完成。您必须在两门考试中取得 80% 或更高的分数,才能满足参加课程的首要要求。6. SAAR AMIS 表格 2875:学生还必须提交 AMIS 表格 2875 系统授权访问请求 (SAAR) 的副本,这是课程的补充。参加课程的学生必须将已填妥并签名的 AMIS 表格 2875 的副本交回给讲师。一旦学生注册了课程并在 ATRRS 中预留席位以参加 UMODPC 课程,他们将收到来自讲师的后续欢迎信。学生必须获得安全许可才能参加课程。
摘要本文的目的是探索AI驱动的代码生成和优化。代码生成器的持续演变也为自动化重复任务的新可能性开辟了可能性,从而使更大的专注于高级问题解决和设计,而不是低级实现细节。随着技术的不断发展,预计代码生成器在软件开发中的作用将进一步扩展,从而为明天的计算环境的挑战提供了创新的解决方案。最终的愿景是将“创意编码”到一个新级别的程序员,专家使用专业的DSL或自动化软件开发的愿景,我们认为,实用实现的途径确实在于其封闭[1]。在这种情况下,很明显,AI方法和Flex太空技术的整合是研究人员的重要领域,因为它为该领域的持续创新和进步提供了许多机会。随着我们更深入地研究代码生成和优化技术的复杂性,越来越明显的是,进一步的探索和改进至关重要,以解开这些尖端的AI-drien驱动方法的全部潜力。此外,对AI和Flex空间融合固有的挑战的识别和主动缓解措施对于确保成功开发和部署有影响力的解决方案至关重要。在每个代码生成器的基础上是由某些编译器中间形式表示的映射[2]。通过对这些关键领域的细微理解,研究人员和从业人员可以致力于实现AI和Flex太空技术相交的变革性可能性[1]。通过解决与这些先进方法相关的复杂性和细微差别,我们可以促进编程实践和软件开发过程的演变,最终导致了所设想的创造性和高效计算生态系统的实质性化。虽然可以在第一级上理解产生有效的低级代码的高级问题,因为它是找到从可能的程序实现的高维空间到有效的代码输出的良好的低维映射,而固有地,代码生成是编程语言设计的促进者,或实现的依赖性(或实践),或实现的依赖性(或实践),并且是在构成方面的依赖性(或实现),并且在构成方面的依赖性(在实现方面都可以构成)。广泛的程序在其具体语法级别操纵其他程序以生成新程序(代码或数据)或优化或理解它们,称为“代码生成器”。在过去的五十年中,代码生成的使用以各种方式导致了在复杂程序中的专业化:使程序变得较小(通过部分评估),更快的速度(专门用于特定输入)和更安全(通过修复可能的动态输入,例如软件故障攻击)。有限的,通常的标量,运行时值的子表达已被常数替换,并且使用可用的方法对这种编译器支持的可用方法进行了有限的循环计数,循环均已展开。代码生成器操纵源代码的能力彻底改变了程序员开发软件的方式,为以前无法实现的效率,安全性和自定义提供了新的机会。这导致了软件的创建和优化方式发生了重大变化,从而导致了各个行业中更先进和复杂的应用程序的开发[2,3]。