具有分层结构的材料结合了软材料域和硬材料域以及聚结界面,与均质材料相比,它们具有更优异的性能。本演讲介绍了在环辛二烯 (COD) 与共聚单体亚乙基降冰片烯 (ENB) 的前端聚合过程中通过形态发生图案形成来控制材料性能。反应动力学和热传输的调整会导致自旋模式不稳定性,并形成无定形和半结晶域,这些域出现在固体聚合物和传播固化前沿之间产生的内部界面上。域的大小、间距和排列由反应动力学、热力学和边界条件之间的相互作用控制。比较用三种不同引发剂制成的聚合物的结构,可以发现聚合物链相对于前端传播方向的方向存在可重复的变化。我们描述了这些图案化域对聚合物拉伸强度、弹性模量和韧性的影响。链的空间分布和排列以及层片的堆积导致优先取向的断裂韧性显著增加。
逆向力学参数识别可以表征难以实现均匀变形状态的超软材料。但是,这通常需要很高的计算成本,而这主要取决于正向模型的复杂性。虽然有限元模型等模拟方法可以捕捉几乎任意的几何形状并实现相关的本构方程,但它们的计算成本也很高。机器学习模型(例如神经网络)在用作替代复杂高保真模型的替代模型时可以帮助缓解此问题。因此,在初始训练阶段之后,它们充当降阶模型,在此阶段它们学习高保真模型的输入和输出关系。由于需要进行模拟运行,因此生成所需的训练数据需要很高的计算成本。在这里,主动学习技术可以根据训练模型的估计获得准确度来选择“最有价值”的训练点。在这项工作中,我们提出了一个循环神经网络,它可以很好地近似粘弹性有限元模拟的输出,同时显著加快评估时间。此外,我们使用基于蒙特卡洛辍学的主动学习来识别信息量很大的训练数据。最后,我们通过识别人类脑组织的粘弹性材料参数来展示开发的管道的潜力。
近几十年来,已经探索了折纸以帮助设计工程结构。这些结构涵盖了多个尺度,已被证明用于航空航天,超材料,生物医学,机器人和建筑应用等各个领域。从传统上讲,折纸或可部署的结构是由手,电动机或气动执行器驱动的,这可能会导致沉重或笨重的结构。另一方面,有效材料对外部刺激的响应重新构成,消除了对外部机械载荷和笨重的致动系统的需求。因此,近年来,与可部署结构合并的活性材料已经显示出对轻重,可编程折纸的远程致动的希望。在这篇评论中,有效材料,例如形状记忆聚合物(SMP)和合金(SMA),水凝胶,液晶弹性体(LCES),磁性软材料(MSMS)以及共价适应网络(CAN)聚合物,它们的驱动机制,以及它们如何用于现有的origanami和这些结构的使用方式,以及它们是可用的结构。此外,突出显示了构建活性折纸的最新制造方法。总结了折纸的现有结构建模策略,用于描述活跃材料的构造模型以及主动折纸研究的最大挑战和未来方向。
材料的性能至关重要,如柔顺性、柔韧性以及与人机交互的整体安全性。通常,传统机器人材料的刚性和硬度限制了它们在某些医疗保健或生物医学领域的应用。[1–3] 材料科学的最新发展使得制造仿生软机器人成为可能,这种机器人能够执行一些简单类型的驱动 [4],包括爬行、[5] 抓握 [6] 或改变形状 [7],但它们仍然远远达不到生物体的复杂性和运动精细度。软机器人最受研究的应用之一是开发能够模仿哺乳动物天然肌肉组织性能的人造肌肉。肌肉组织本质上很复杂,既强壮又快速,同时通过其纤维束的有效自组织实现各种各样的运动。然而,目前的材料仍然缺乏完全复制这些特性的能力。 [8] 此外,人们强烈希望获得生物组织的其他特性,如自我修复、能源效率、功率重量比、适应性或生物传感等,但这些特性很难用人造软材料实现。[9] 生物混合机器人技术应运而生,作为一种协同策略,将生物实体和人造材料的最佳特性整合到更高效、更复杂的系统中,希望能克服当前软机器人面临的困难。已经提出了几种统一生物混合设备开发的策略
材料的性能至关重要,如柔顺性、柔韧性以及与人机交互的整体安全性。通常,传统机器人材料的刚性和硬度限制了它们在某些医疗保健或生物医学领域的应用。[1–3] 材料科学的最新发展使得制造仿生软机器人成为可能,这种机器人能够执行一些简单类型的驱动 [4],包括爬行、[5] 抓握 [6] 或改变形状 [7],但它们仍然远远达不到生物体的复杂性和运动精细度。软机器人最受研究的应用之一是开发能够模仿哺乳动物天然肌肉组织性能的人造肌肉。肌肉组织本质上很复杂,既强壮又快速,同时通过其纤维束的有效自组织实现各种各样的运动。然而,目前的材料仍然缺乏完全复制这些特性的能力。 [8] 此外,人们强烈希望获得生物组织的其他特性,如自我修复、能源效率、功率重量比、适应性或生物传感等,但这些特性很难用人造软材料实现。[9] 生物混合机器人技术应运而生,作为一种协同策略,将生物实体和人造材料的最佳特性整合到更高效、更复杂的系统中,希望能克服当前软机器人面临的困难。已经提出了几种统一生物混合设备开发的策略
磁响应软材料是下一代软机器人、假肢、手术工具和智能纺织品的有前途的构建模块。然而,迄今为止,制造具有极端长宽比的高度集成磁性纤维(可用作可操纵导管、内窥镜或功能性纺织品)仍然具有挑战性。本文提出了多材料热拉伸作为材料和加工平台,以实现数十米长的柔软、超可拉伸且高弹性的磁性纤维。展示了直径低至 300 μ m、长宽比为 10 5 的纤维,将纳米复合域与嵌入软弹性体基质中的铁磁微粒集成在一起。通过选择适当的填料含量,必须在磁化密度和机械刚度之间取得适当的平衡,展示了可承受 > 1000% 应变的纤维,它们可以被磁力驱动并举起高达自身重量 370 倍的重量。磁性纤维还可以集成其他功能,如微流体通道,并编织到传统纺织品中。研究表明,这种新型磁性纺织品可以清洗并承受极端的机械约束,并且在磁力驱动下可以折叠成任意形状,这为医疗纺织品和软磁系统领域的新奇机遇铺平了道路。
2D超材料具有巨大的声音,光学和电磁应用,因为它们的独特特性和符合弯曲底物的能力。主动的超材料吸引了显着的研究注意力,因为它们的按需调谐特性和表现通过形状的重新配置。2D主动超材料通常通过内部结构变形实现活动性能,从而导致整体维度的变化。这需要对构象基材的相应更改,或者超材料无法提供完整的区域覆盖范围,这可能是其实际应用的显着限制。迄今为止,以不同形状的重新配置来实现具有区别的活跃2D超材料仍然是一个巨大的挑战。在本文中,介绍了磁机械双层超材料,以证明具有区域保护能力的面积密度可调性。双层超材料由两个具有不同磁化分布的磁性软材料组成。在磁场下,每一层的表现都不同,这使超材料可以将其形状重新构成多种模式,并显着调整其面积密度而不改变其整体尺寸。保护区域的多模式形状重新构造被进一步利用为主动声波调节剂,以调整带隙和波传播。因此,双层方法为更广泛的应用提供了保护区域主动超材料的新概念。
大多数Libs都包含各种材料的复杂性,并侵入了阴极,阳极,电力和分离器的四个主要成分。它还由从软材料(例如包装材料和粘合剂)到陶瓷,碳和金属材料(如当前收集器,导电添加剂和外部标签)组成的各种材料。[11,12]了解每种材料的个体特征以及电池内的降解行为引起的潜在缺陷对于验证安全性和可靠性至关重要。[7,13]通过广泛的研究,电池老化的主要起源已被确定为活性材料晶体结构的降解[14-16],并且由于电极/电解质界面的不稳定性,化学和电化学侧面的反应。[17 - 20]这些发现提供了有关解决学术界和行业问题的见解,并通过推进制造技术来验证绩效可靠性。然而,面向性能的细胞设计和高尺度制造的意外细胞失衡会增加电池故障和火灾的风险。[21 - 24]在制造过程中很难检测出意外的故障或小错误,并且可以被视为在极端工作条件下可能出现的“潜在缺陷”。[25 - 27]此处的“潜在”缺陷术语是指在实际使用前进行合理彻底检查无法发现的电池内部的故障。例如,几个潜在缺陷可能包括无法完全尽管细胞制造过程已经智能自动化,但确定细胞的断层类型和失败模式并寻求潜在缺陷的位置仍然是一个挑战。
本综述介绍了设计刺激响应、功能性、侧链、端接液晶原基液晶聚合物 (LCP) 方面的最新进展。合成方法(包括受控技术和活性技术)的发展为获得定义明确的液晶聚合物提供了方便。例如,线性液晶嵌段共聚物 (LCBCP)(具有线性、螺旋-螺旋、非液晶嵌段和端接液晶原基液晶嵌段的嵌段共聚物)的合成为获得具有与传统嵌段共聚物类似的形态和性质的聚合物提供了途径。然而,具有分支螺旋-螺旋非液体液晶嵌段和端接液晶原基液晶嵌段的拓扑分支 LCBCP 的合成用于操纵所得聚合物的相行为、形态和取向动力学。此外,支链液晶无规共聚物的合成(其中支链螺旋非液晶单元和端接液晶单元呈统计分布)可产生前所未见的螺旋和弯曲界面,具有新的增强特性。最后,将有机染料分子整合到各种液晶聚合物框架中的合成策略可产生新的光学活性和自适应软材料。在展望部分,讨论了对拓扑多样化的合成和天然衍生的液晶聚合物结构的需求,以及生产功能材料及其应用的加工工具和场导向组件。
YCLIC烯烃共聚物(COC)包括一类重要特性的重要特性,例如软材料或硬材料,具体取决于最终共聚物组成中Norbornene Monober的含量。在普通的商业共聚物中,诺本烯的量超过20%(通过mol),该量被随机分布在共聚物的微观结构中,并使最终聚合物具有无定形和光学透明的结构。共聚物结构中悬齿含量的增加导致最终共聚物的玻璃过渡温度(T g)的相应升高。这种类型的COC的显着光学特性在很大程度上取决于它们的无定形结构,这不仅限于可见的光波长范围,因此COC可以用作紫外线和可视波长中的透明聚合物,以实现合适的光学透明产品。由于对化学物质尤其是极性溶剂的耐药性较高,因此使用COC与其他聚合物以竞争方式生产实验室设备。另一方面,COC是惰性的生物材料,使其成为适用于药物包装申请的候选者,包括预填充注射器。水是用于生产可注射产品的主要溶剂,因此这些共聚物的吸水率低可确保在环境条件下最终产物的尺寸稳定性。在高度潮湿的环境中,COC的吸水能力的限制为4和10倍,比聚碳酸酯和聚甲基丙烯酸甲酯聚合物的吸水能力分别限制为4和10倍。最后,提到了COC处理及其应用的详细信息。在这项研究中,在对COC进行了简要介绍之后,讨论了不同催化剂的聚合方法,并讨论了这些共聚物的光学,机械和热特性。
