扉页 磁控表面粗糙度与弹性模量对磁流变弹性体—铜副滑动摩擦特性影响研究 李睿,1975年生,重庆大学博士研究生,现任重庆邮电大学教授,主要研究方向为智能检测技术、摩擦控制、智能机械结构系统。 电话:+86-135-94078659;邮箱:lirui_cqu@163.com 王迪,1996年生,重庆邮电大学自动化学院硕士研究生,邮箱:812996901@qq.com 李欣燕,1995年生,重庆邮电大学自动化学院硕士研究生。 E-mail:459148593@qq.com 杨平安,1989年生,重庆大学博士研究生,现职为重庆邮电大学讲师,主要研究方向为智能仿生复合材料、柔性传感器、电磁屏蔽材料与结构设计。 电话:+86-151-23254645;E-mail:yangpa@cqupt.edu.cn 阮海波,1984年生,重庆大学博士研究生,主要研究方向为柔性纳米线复合透明电极的构建及其性能提升。 电话:+86-136-47619849;E-mail:rhbcqu@aliyun.com 寿梦杰,1993年生,重庆大学博士研究生,主要研究方向为智能检测技术、摩擦控制、智能机械结构系统。 E-mail: shoumj@cqupt.edu.cn 通讯作者 : 杨平安 E-mail : yangpa@cqupt.edu.cn
背景:一名72岁的男性在中风后六个月遭受吞咽困难和左侧弱点,在食用液体和软食物期间遇到了诸如咳嗽和窒息的挑战,以及长时间的用餐过程。双侧血栓性梗塞和左侧侧面化。案例:Gugging吞咽筛查量表(GUSS)评估表现出严重的损害,总得分为7,尽管传统的物理治疗试图改善吞咽功能,但仍持续存在。随后,实施了重复的经颅磁刺激(RTMS),涉及在对比半球中ipsilesiles hemisphere中的高强度刺激和低强度刺激。值得注意的是,在RTMS后一个月,患者表现出了重大进展,这表明了15分的进度,表明吞咽功能增强。讨论:此案强调了双侧RTMS半球刺激对冲刺后吞咽困难的积极影响。高强度的iPsiles和低强度对比刺激的战略应用是减轻吞咽困难的有效干预措施。这些发现突出了RTM作为中风后持续性吞咽困难的创新治疗方法的潜力。关键字:吞咽困难,刺激后,刺激,TMS,经颅磁刺激
图1。您选择的磁珠会影响您的结果。dynabeads磁珠具有定义的表面以进行必要的结合,而没有内部表面可以捕获不需要的蛋白质。(a)Dynabeads产品是具有高度控制的产品质量制造的最均匀,单分散的超级磁珠,可帮助确保最高的可重复性。(b – d)替代供应商的磁性颗粒具有可变的形状和尺寸,可捕获杂质,从而导致较低的可重复性和增加的非特异性结合。
(1) MP Bendsøe 和 N. Kikuchi,“使用均质化方法在结构设计中生成最佳拓扑”,Comp. Methods in Appl. Mech. Eng.,第 71 卷,第 197-224 页,1988 年。 (2) MP Bendsøe 和 O. Sigmund,拓扑优化,理论、方法和应用,Springer,2004 年。 (3) Hidenori Sasaki 和 Hajime Igarashi,“使用傅里叶级数对 IPM 电机进行拓扑优化”,Journal of Electrical Engineering (B),第 137 卷,第 3 期,第 245-253 页,2017 年 3 月。 (4) Y. Tsuji 和 K. Hirayama,“使用基于函数扩展的折射率分布的拓扑优化方法设计光路设备”,IEEE Photonics Technol. Lett., (5) T. Sato、H. Igarashi、S. Takahashi、S. Uchiyama、K. Matsuo 和 D. Matsuhashi,“使用拓扑优化实现内置永磁同步电机转子形状优化”,《电气工程杂志 (D)》,第 135 卷,第 3 期,第 291-298 页,2015 年 3 月。 (6) S. Kobayashi,“实数编码 GA 的前沿”,《人工智能杂志》,第 24 卷,第 1 期,第 147-162 页,2009 年 1 月。 (7) T. Sato、K. Watanabe 和 H. Igarashi,“基于正则化高斯网络的电机多材料拓扑优化”,《IEEE 会刊》, (8) S. Hiruma、M. Ohtani、S. Soma、Y. Kubota 和 H. Igarashi,“参数和拓扑优化的新型混合:应用于永磁电机,”IEEE Trans. Magn.,第 57 卷,第 7 期,8204604,2021 年 (9) Y. Otomo 和 H. Igarashi,“用于无线电源传输设备的磁芯 3-D 拓扑优化,”IEEE Trans. Magn.,第 55 卷,第 6 期,8103005,2019 年。 (10) K. Itoh、H. Nakajima、H. Matsuda、M. Tanaka 和 H. Igarashi,“使用带归一化高斯网络的拓扑优化开发用于缝隙天线的小型介电透镜,”IEICE Trans. Electron., E101-C 卷,第 10 期,第 784-790 页,2018 年 10 月。 (11) N. Hansen、SD Müller 和 P. Koumoutsakos,“通过协方差矩阵自适应降低去随机化进化策略的时间复杂度(CMA-ES),”进化计算,第 11 卷,第 1 期,第 1-18 页,2003 年。 (12) N. Aage、E. Andreassen、BS Lazarov 和 O. Sigmund,“用于结构设计的千兆体素计算形态发生”,自然,第 550 卷,23911,2017 年。
1 简介 1 1.1 概述 1 1.1.1 软错误的证据 2 1.1.2 软错误的类型 3 1.1.3 减轻软错误影响的经济有效的解决方案 4 1.2 故障 6 1.3 错误 7 1.4 指标 9 1.5 可靠性模型 11 1.5.1 可靠性 12 1.5.2 可用性 13 1.5.3 其他模型 13 1.6 互补金属氧化物半导体技术中的永久性故障 14 1.6.1 金属故障模式 15 1.6.2 栅极氧化物故障模式 17 1.7 CMOS 晶体管中的辐射诱发瞬态故障 20 1.7.1 阿尔法粒子 20 1.7.2 中子 21 1.7.3 阿尔法粒子和中子与硅晶体的相互作用 26 1.8 阿尔法粒子和中子撞击的架构故障模型 30 1.9 静默数据损坏和检测到的不可恢复错误 32 1.9.1 基本定义:SDC 和 DUE 32 1.9.2 SDC 和 DUE 预算 34