量子技术 2.0 全面发展道路上的一个关键障碍 [ 1 ] 与最初刺激其发展的情况相同:用经典方法有效模拟足够大的量子相干结构根本不可能。实际上,“足够大”的系统是由一百个左右量子比特组成的,但这个数字仍然太小,不足以组成能够模拟其他“足够大”的量子系统的量子计算机。另一方面,由数千个量子比特组成的人工量子相干系统正在被制造出来 [ 2 ],甚至得到成功应用,如商用量子退火炉 [ 3 , 4 ]。超导量子比特阵列也被认为是能够超越标准量子极限的微波探测器(例如,在搜索银河系轴子等应用中 [ 5 ])。阵列的量子相干性是检测机制的关键要素。这种“量子容量差距” [6] 需要得到弥合,以便系统地开发量子技术 2.0 的全部潜力,例如有噪声的中型量子 (NISQ) 设备 [7] 和通用容错量子计算机。对大型量子系统进行有效的经典模拟并不是绝对不可能的,因为它涉及对这种系统的任意演化的模拟,即其状态向量可以到达其所有(指数高维)希尔伯特空间,并且可能在有限时间内做到这一点。Margolus-Levitin 定理及其推广 [8-13] 对这种演化的速度进行了限制,从而限制了在任何有限时间间隔内可访问希尔伯特空间的部分。这与 [14] 的证明相一致,即在系统尺寸呈多项式缩放的时间内,任意时间相关局部哈密顿量可以生成的所有量子多体态的流形在其希尔伯特空间中占据的体积呈指数级小。(这是一个字面上正确的表述,因为量子比特系统的希尔伯特空间是一个有限维复射影空间;也就是说,它是紧致的,而且它有一个酉不变的富比尼-施图迪度量 [15])。数值和分析研究还表明,描述
迄今为止,所有暗物质 (DM) 存在的证据都是通过其与可见物质的引力耦合获得的。另一方面,迄今为止所有对暗物质的直接探测搜索都必须假设与标准模型存在一些额外的耦合,例如 WIMP 的弱核耦合,或轴子的胶子/光子耦合。一个明显可取的目标是直接通过其引力耦合来搜索粒子 DM。最近,有人提出,通过地面实验 [1–3] 可以实现纯引力直接探测策略,尽管这非常具有挑战性。这一想法利用了光学或微波光机械传感设备的量子读出和控制方面令人难以置信的快速进展 [4–6]。这些设备已被证明是一个有前途的平台,可用于搜索大量暗物质候选者 [7],涵盖超轻 [8–11]、轻 [12] 以及 WIMP 级和更重的质量范围 [13]。特别是,参考文献 [14]。 [3] 表明,由至少 10 6 个机械传感器组成的大型阵列,每个传感器的质量在克级左右,可以对质量在普朗克尺度 m Pl ≈ 2 × 10 18 GeV ≈ 4 µg 左右的暗物质的引力特征敏感。有关这些超重暗物质候选者的概述,请参阅 Snowmass 2021 社区白皮书 [14]。在这份 Snowmass 白皮书中,我们概述了一项新兴的实验工作,我们将其称为 Windchime 项目,以开发此类暗物质探测器。核心计划是并行构建和操作许多量子限制机械加速度计阵列。这样的系统将能够独特地搜索大量有趣的信号,而引力暗物质探测是一个非常长期的目标。需要进行许多技术开发,涉及四个关键方面:热隔离、低于标准量子极限的量子测量噪声、传感器数量及其读数的扩展以及来自许多探测器的连续数据流的数据处理和分析技术。在开发这些技术的过程中,将实现许多短期物理机会,并且除了寻找暗物质之外,研发计划还将有大量应用。我们概述了技术挑战、物理机会、我们目前的努力以及实现长期计划的途径。
B41.002:高 Q 值超导谐振器高电阻率硅晶片低温损耗角正切测量 B57.002:超导 Nb 薄膜中亚间隙准粒子散射和耗散 B57.008:Nb 超导射频腔的电磁响应 B57.010:用于高 Q 值谐振腔的高纯铌超导态氢化物的非平凡行为 B57.012:轴子搜索的可行性研究:Nb SRF 腔中的非线性研究 D37.002:基于三维微波腔的微波光量子转导 D39.013:带有级联低温固态热泵的量子阱子带简并制冷 D40.008:基准测试方八边形晶格 Kitaev 模型的 VQE D41.003:用于量子计算的 Nb 谐振器中氧化铌退火的原位透射电子显微镜研究 F36.005:识别超导量子比特系统中缺陷和界面处的退相干源 F36.006:使用双音光谱理解和减轻超导射频 (SRF) 腔中的损耗 F36.007:通过 HT 相界分析优化用于量子器件的 Nb 超导薄膜 F36.008:循环:超导量子比特的多机构表征 F36.010:铌射频腔的 Nb/空气界面的原子尺度研究 K29.002:超导量子材料与系统 (SQMS) – 新的 DOE 国家量子信息科学研究中心M41.009:可调谐 transmon 量子比特的长期能量弛豫动力学作为损耗计量工具 N27.006:超导量子材料与系统 (SQMS) 研究中心的量子信息科学生态系统工作 Q71.007:高磁场中的超导材料在高能物理量子传感中的应用 Q37.005:多模玻色子系统量子启发式的数值门合成 S38.003:基于微米级约瑟夫森结的约瑟夫森参量放大器的制造和特性 S72.009:探究低温真空烘烤对超导铌 3-D 谐振器光子寿命的作用 T00.106:铌硅化物纳米膜的稳定性、金属性和磁性 T00.119:不同 RRR 值的铌膜的特性低温 T72.005:单个纳米结处异质偶极场和电荷散射的太赫兹纳米成像 W40.006:量子芝诺效应对两能级系统的动态解耦 W34.013:3D SRF QPU 的潜在多模架构探索 Y34.008:高相干性 3D SRF 量子比特架构的进展 Y40.009:理解和减轻超导量子比特中 TLS 引起的高阶退相干