微球封装的BDNF,以防止清除并延长该神经素的功效。在PC12大鼠嗜铬细胞瘤细胞系中观察到了BDNF从壳聚糖微球释放的神经性生长活性,该细胞系取决于神经营养蛋白通过神经营养蛋白受体(NTR)分化。,我们获得了用BDNF负载的壳聚糖微球处理的细胞的神经外流的快速持续增长,而不是对照细胞(p <0.001)。在载有BDNF的壳聚糖微球中,神经智能增长速度的平均增长速度比游离BDNF高三倍。我们得出的结论是,从壳聚糖微球中BDNF缓慢释放通过NTR增强信号传导,并促进神经元的轴突生长,这可能构成神经退行性疾病和CNS病变中的重要治疗剂。
神经肌肉接头 (NMJ) 处的化学突触呈现出一种复杂的结构,其形成取决于两个主要因素的相互诱导:脊髓运动神经元和骨骼肌纤维。这种微妙平衡的破坏是许多神经肌肉疾病的根源,其细胞和分子机制仍有部分未知。这种病理生理学相关性引起了许多研究小组对开发有效研究模型的浓厚兴趣:几十年来,动物模型,尤其是小鼠,一直是神经肌肉疾病建模的黄金标准。[1] 总体而言,动物模型捕捉到了人类疾病的重要特征,因此对于了解器官和生物体规模的疾病进展非常有价值。然而,将这一发现充分应用于人类病理生理学的临床
Luca La Via 1, Elona Ndoj 1, Matteo Bertoli 1, Veronica Mutti 1, Giulia Carini 1, Alice Filippini 1.2, Federica Bono 1, Chiara Fiorentini 1, Giovanni Ribaudo 1, Alessandra Gianonelli 1, Giuseppe Borsani 1 Isabella Russo 1.2, Alessandro Baron 1.3
视网膜神经节细胞(RGC)通常无法再生轴突,导致视神经损伤后视力丧失。许多研究表明,调节特定基因可以增强RGC的存活并促进视神经再生,从而通过单基因操作诱导体内长距离轴突再生仍然具有挑战性。然而,合并的多基因疗法已被证明有效地有效增强了轴突再生。目前,有关促进视神经再生的研究仍然很慢,大多数研究无法实现超出视神经的轴突生长或与大脑重新建立联系。未来的研究优先级包括指导轴突生长沿正确的途径,促进突触形成和髓鞘形成,并修改抑制性微环境。这些策略不仅对视神经再生至关重要,而且对于中枢神经系统修复中的更广泛应用至关重要。在这篇综述中,我们讨论了视神经再生的多因素治疗策略,从而提供了对神经再生研究的见解。
抽象的癫痫治疗方法只能管理该病的症状,但不能改变初始发作或停止疾病的进展。因此,至关重要的是鉴定可以瞄准新型细胞和分子机制和作用机制的药物。越来越多的证据表明,轴突引导分子在神经网络的结构和功能修饰中起作用,并且这些分子的失调与癫痫敏感性有关。在这篇综述中,我们讨论了轴突引导分子在癫痫患者中神经元活性中的重要作用,以及这些分子对突触可塑性和脑组织重塑的影响。此外,我们研究了轴突引导分子与神经炎症之间的关系,以及有助于癫痫发展的特定大脑区域的结构变化。充足的证据表明,包括信号蛋白和埃弗林在内的轴突引导分子在引导轴突生长和建立突触连接方面起着基本作用。其表达或功能的偏差会破坏神经元连接,最终导致癫痫发作。神经网络的重塑是癫痫的重要特征,轴突引导分子在神经回路的动态重组中发挥了作用。这反过来会影响突触的形成和消除。这些分子的失调可能会破坏神经网络中激发与抑制之间的微妙平衡,从而增加过度兴奋和癫痫发育的风险。炎症信号可以调节轴突引导分子的表达和功能,从而影响轴突生长,轴突取向和突触可塑性。神经炎症的失调会加剧神经元功能障碍并有助于癫痫的发生。本综述研究了与癫痫中轴突引导分子的致病性相关的机制,为探索治疗靶标提供了宝贵的参考,并为这种情况提供了有关治疗策略的新观点。关键词:轴突指导;耐药性癫痫;癫痫;神经再生;神经系统疾病;神经通路;神经炎性疾病;神经元可塑性;神经元;突触重塑
与在大脑发育过程中相比,通常认为成年大脑的电路形成是不存在的。然而,对神经系统疾病,成人出生,嫁接和再生神经元以及先天行为的研究表明,成年大脑保留了相当大的轴突生长和电路形成能力(1)。了解成人的基本机制或鉴定出新形式的电路形成将有助于进入健康和疾病中脑电路的组织。海马齿状回是一个大脑区域,可以通常观察到成年人中形成成年人,要么是成人出生的未成熟颗粒细胞(GCS)(GCS)(2)或癫痫相关的局部相关的局部苔藓纤维的整合,因此由成熟的GCS(3)(3)。由成人出生的GC形成的电路实际上与GC在开发过程中形成的电路几乎相同:GCS将其轴突,苔藓纤维,通过Hilus,通过Hilus到同侧CA3区域,并在不同的谷氨酸和GABAEGIC细胞上形成突触
Ninjurin1 (NINJ1) 最初被鉴定为一种神经损伤诱导的粘附分子,可促进轴突生长。它最初被描述为促进神经再生并介导与神经炎症相关的单核细胞/巨噬细胞的跨内皮运输。最近的证据表明,NINJ1 介导细胞溶解死亡中的质膜破裂 (PMR)。NINJ1 的缺失或抑制可以延迟 PMR,从而减轻细胞溶解引起的炎症扩散并防止各种细胞死亡相关病理的进展,表明这些过程中存在保守的调控机制。进一步的研究阐明了 NINJ1 介导的 PMR 的结构基础和机制。虽然 NINJ1 在 PMR 中的作用已经确定,但其激活因子的身份及其在疾病中的意义仍有待充分探索。本综述综合了目前关于 NINJ1 介导的 PMR 的结构基础和机制的知识,并讨论了其在炎症疾病、神经系统疾病、癌症和血管损伤中的意义和治疗靶向潜力。
轴突是一款复杂的大分子机器,由相互关联的部分组成,它们在平行轴之间传输信号,例如旋转齿轮转移运动。生长锥是一种精细的传感器,可以通过产生的牵引力推动尖端并向前拉动轴突轴来整合机械和化学提示并传递这些信号。轴突轴反过来又感知了这种拉力,并在精心策划的响应中传递了该信号,协调细胞骨架重塑和插入的质量,以维持和支持尖端的前进。广泛的研究表明,主动力的直接应用本身是轴突生长的强大诱导剂,可能绕开了生长锥的贡献。本综述对当前有关力是轴突增长的使者及其控制导航的行动方式的知识的关键观点,包括尚不清楚的方面。它还专注于旨在机械操纵轴突的新型方法和工具,并讨论了它们在重新连接神经系统的潜在新疗法方面的影响。
结论:我们确定了脊髓神经损伤与修复领域人工智能研究的三个研究热点:(1)智能机器人和肢体外骨骼辅助康复训练;(2)脑机接口;(3)神经调节和非侵入性电刺激。此外,还讨论了许多新的热点:(1)从基于卷积神经网络的图像分割模型入手;(2)利用人工智能制造聚合物生物材料,为神经干细胞衍生的神经网络组织提供所需的微环境;(3)人工智能生存预测工具,以及遗传学领域的转录因子调控网络。虽然人工智能在脊髓神经损伤与修复领域的研究有很多好处,但该技术也存在一些局限性(数据和伦理问题)。未来的研究应解决数据收集问题,这需要大量高质量的临床数据样本来建立有效的人工智能模型。同时,该领域的基因组学和其他机制研究还很脆弱。未来,机器学习技术,如AI生存预测工具和转录因子调控网络,可用于与再生相关基因的上调和轴突生长的结构蛋白的产生相关的研究。
我们神经系统的一个深刻的方面是,在发展和成年期间,我们的大脑会受到广泛的可塑性。这种可塑性要求在空间和时间上动态调节神经蛋白的补体 - 神经蛋白质组。一个由三个神经科学家组成的国际小组,迈克尔·格林伯格(Michael Greenberg),克里斯汀·霍尔特(Christine Holt)和艾琳·舒曼(Erin Schuman)均揭示了如何在分子水平上介导的基本原理 - 从活性依赖性基因转录到mRNA的局部翻译,将mRNA的局部翻译成树突中的新蛋白质和生长的轴突中的新蛋白质。他们的发现为指导大脑发育过程中轴突生长的细胞和分子机制提供了壮观的新见解,这使发展中和成人大脑能够通过经验来塑造。他们的神经科学是一个美丽的发现故事,它也为大脑的神经发育和神经退行性疾病的病因提供了线索。的工作,这三位神经科学家被授予世界上最大的大脑研究奖 - 大脑奖。