摘要:隧道内部变形是由于上部结构附加荷载、超载、岩土体内部应力等因素引起的。隧道变形测量对于确定隧道塑性变形的大小具有重要意义,是隧道安全监测的重要环节。本研究采用有限元法分析了位于四层岩层中、受地下水影响、采用新奥隧道施工方法 (NATM) 逐步开挖的马蹄形或蛋形隧道的三维非线性行为。详细研究了随着开挖步骤的不同,拱顶和隧道周围受到不同载荷条件作用而发生的永久变形。此外,通过变形曲线对两种隧道几何形状下所有开挖阶段隧道关键段发生的永久变形进行了相对比较。已经确定,选择隧道几何形状为蛋形而不是马蹄形更有利于减少浅层和层状岩石环境中的下沉和收敛量。
摘要 - 结构设计用于承受多种环境载荷条件,并确保在规定的时间内将这些载荷安全转移到地基。然而,生命损失和不利的经济影响是结构倒塌造成的潜在问题。建筑物的运营和结构健康监测 (SHM) 可用于减轻尼日利亚的建筑物故障。本研究考虑使用基于摄像机的技术、地面穿透雷达 (GPR)、光纤传感器 (FOS) 和压电薄膜进行损坏检测。从现有文献中分析了这些技术,以评估它们的应用并验证它们在可用性、实际应用、操作评估、数据采集和处理方面的有效性。本研究描述了 SHM 系统的性能、它们的使用方式以及它们在尼日利亚的可用性。因此,提出 BHM 作为缓解尼日利亚建筑物故障的工具。关键词- 建筑健康监测 (BHM)、地面穿透雷达 (GPR)、光纤传感器 (FOS)、压电薄膜、尼日利亚建筑物故障、基于视觉的技术。
由于其特定的强度和海洋功能,薄壁结构越来越多地使用自动动机,以减少易受伤害的道路使用者(VRU),运输和航空航天工业的致命和严重伤害[1-5]。先前的分析[2,6,7],实验[8-10]和计算研究[3,11,12]的结果使恶魔散布在能量吸收和崩溃的结果取决于许多结构和材料参数,包括金属类型,织物/基质类型,制造技术,结构几何,结构性的几何形状,维度和载荷条件[13-15]。由于其出色的机械特性,铝已经被许多作者研究了前几年[16,17]。今天,尽管复合材料和聚合物材料可用于能量吸收应用,但铝仍用于制造能量吸收。基于其延展性特征,轴向载荷下的铝管通过产生琴弦和DIA MOND变形模式通过多种塑性变形机制分散动能[18]。此外,在最近的Deca des中,管道几何形状的影响(即圆形,三角形,正方形和矩形)在薄壁吸收的响应上已得到广泛研究。
摘要 起落架是飞机的主要部件之一。起落架不仅在起飞和降落时使用,而且在大多数情况下也用于地面机动。由于其功能,起落架也是飞机的关键安全部件之一,因为它可以分散作用在飞机上的着陆载荷。上述载荷来自着陆时的垂直和水平速度,以及飞机因刹车而失去速度。起落架在每次着陆时都会承受不断变化的力,作用在各个方向上,唯一的区别在于它们的大小。重复的载荷条件会导致起落架严重磨损。这种磨损可分为两类,一类是刹车片等易耗件的磨损,另一类是结构部件的疲劳磨损。后一种磨损更危险,因为它进展缓慢,在许多情况下难以察觉。疲劳磨损可以通过数值分析来估计——这种方法对单个部件有很大的概率,但由于起落架整体的复杂性,它不够精确,无法应用于整个结构。为了评估整个起落架的疲劳,法规接受的最佳方法是实验室测试方法。它涉及一系列类似于真实着陆条件分布的各种跌落测试。测试的目的是
众所周知,腐蚀疲劳是海上结构(如海上风力涡轮机)的主要失效机制,这是由于在高度腐蚀的环境中不断施加循环载荷所致。在本研究中,首先回顾和讨论了现有的腐蚀疲劳裂纹扩展 (CFCG) 理论和模型,随后提出了一种新方法来准确描述各种载荷条件和频率下的腐蚀疲劳行为。为了检验所提出方法的有效性,对 S355G10 + M 中强度钢紧凑拉伸 C(T) 试样在不同载荷水平和频率下进行了疲劳裂纹扩展试验。最初使用传统的断裂力学参数 Δ K 分析实验数据,结果表明该参数在阐明频率对 0.2 – 0.5 Hz 范围内 CFCG 速率的影响方面存在局限性。因此,开发了一个新的断裂力学参数,可以更清楚地看到和解释这些影响。此外,使用引入的断裂力学参数开发了一种新的 CFCG 模型,用于根据空气中的短期测试数据预测海水中的裂纹扩展速率。已发现所提出的模型与本研究中的 S355G10 + M 腐蚀疲劳实验数据以及文献中提供的 S355J2 + N 结构钢数据具有很好的相关性。
热载荷或机械载荷引起的应力状态非单调变化可能导致材料微观结构的永久性变化,并导致疲劳裂纹的产生。自19世纪的先驱工作以来的研究表明,疲劳现象是一个非常复杂且多尺度的问题,正如Schütz [1] 等人所评论的那样。为了在机械结构设计过程中克服这一问题,所提出的疲劳损伤模型的适用性通常限于给定的材料类型、载荷条件、温度、疲劳寿命范围等,这些条件接近于模型验证的条件。据观察,工程实践特别广泛地使用最不复杂的模型。人们倾向于修改这些模型并扩展其操作范围。因此,近几十年来已经开发了大量多轴疲劳损伤模型[2 – 8]。处理多轴应力状态问题的损伤模型包括一个将空间应变/应力状态降低为等效损伤标量值的功能。在疲劳寿命计算算法中,将此标量值与适当的参考疲劳特性进行比较,从而估算出疲劳寿命。这种相对简单的方法已经获得了相当大的普及,并且在过去几年中已经提出了几种新模型[9 – 23]。Apar
组件的抽象焊接关节通常是最容易受到振动载荷条件的影响。Steinberg的封闭式解决方案已被广泛用于行业,以识别高风险组件,以作为振动负载下详细有限元(FE)耐用性分析的候选者。不幸的是,Steinberg的封闭式解决方案仅适用于SNPB,而不适用于无铅材料(SAC);因此,识别高风险SAC组件会很麻烦,特别是如果BOM中有许多SAC组件。本文是提出一种能够与Steinberg的封闭形式解决方案结合的方法,以识别高风险SAC组件。通过使用高和低周期的疲劳棺材曼森闭合形式方程的高周期,SNPB和SAC疲劳与应变范围关系之间的比较得出了此方法。此外,该方法还可以使用已经衍生的另一种材料中已经衍生的疲劳周期来预测一种材料的焊料关节疲劳周期,而无需重新运行详细的FE分析。此附加功能将有助于例如,如果从SAC到SNPB重新球或反之亦然,则会有任何风险。强烈建议在评估振动下的无铅组件时使用此方法,因为目前仅可用的方法可以实现此目的。关键词棺材曼森,无铅焊料,囊,斯坦伯格,SNPB,PCB
方法旨在通过实验和有限元分析 (FEA) 研究确定旋转圆盘的纤维增强复合材料的机械行为。首先,对两个不同系列进行 FEA 分析,载荷条件为旋转速度 600 RPM,外部摩擦力 10 N。其中,利用 FEA 工具对七种不同的复合材料样品进行结构特性分析,例如环氧-碳-UD-预浸料-SiC、环氧-碳-UD-湿法-SiC、环氧-碳-编织-预浸料-SiC、环氧-碳-编织-湿法-SiC、环氧-E-玻璃-UD-SiC、环氧-E-玻璃-湿法-SiC 和环氧-S-玻璃-UD-SiC。除这些材料外,还通过 FEA 分析了四种基础材料,以在相同载荷条件下进行比较。其次,进行了实验研究,以调查带有碳化硅 (SiC) 的 FRP 实心盘式制动器转子的适用性,为此,准备了基于碳编织基陶瓷复合材料的 ASTM 标准样品销盘装置。还在两种方法的位移之间执行了验证。最后,这项工作证实了碳纤维陶瓷基复合材料是抵抗旋转动力载荷的良好材料,因此这项工作还强烈建议在制造飞机和汽车盘式制动器等旋转部件时实施 CCMC。
摘要:最近的研究表明,砂颗粒的断裂在确定不同载荷条件下颗粒材料的塑料体积变化方面起着重要作用。用于更好地了解颗粒断裂对颗粒材料行为的影响的主要工具之一是离散元素建模(DEM)。本文采用键合模型(BBM)来模拟沙子的断裂行为。使用线性平行的接触模型将每个砂粒子建模为在其接触处键合的刚性块的聚集体,该模型可以同时传递力矩和力。dem模拟的颗粒与使用高分辨率3D同步加速器微型计算机断层扫描(SMT)获得的实际三维(3D)形状的实际三维(3D)形状匹配。由单个合成二氧化硅立方体无限的一维(1D)压缩的结果用于校准模型参数。研究了由三个砂颗粒组成的样品,研究了颗粒裂缝,这些砂颗粒在受约束的1D压缩下加载。从DEM模型中测量的断裂能与实验测量的良好匹配。使用BBM研究了接触载荷条件和粒子相互作用的效果,使用BBM可以紧密捕获真实砂颗粒的3D形状。doi:10.1061/(ASCE)GT.1943-5606.0002281。这项工作可根据创意共享归因4.0国际许可的条款提供,https://creativecommons.org/licenses/4.0/。
本文利用塑性 CTOD 范围 Δ δ p 研究了 2024-T351 铝合金中的疲劳裂纹扩展 (FCG)。对 12 毫米厚的 CT 试样进行实验测试以获得 FCG 速率,并对圆柱形试样进行实验以获得应力 - 应变环。数值分析在材料、几何形状和载荷条件方面复制了实验工作,但假设纯平面应变状态,以获得 Δ δ p 。使用实验应力 - 应变环拟合材料参数。实验工作表明,随着应力比从 R = 0.1 增加到 R = 0.7 毫米,FCG 速率增加,这表明存在裂纹闭合现象。然而,对裂纹尖端后方第一个节点位置的分析表明,在平面应变状态下没有裂纹闭合,而在平面应力状态下发现最大值 36%。因此,即使在 12 毫米厚的样品中,表面也会影响 FCG 速率。发现 da/dN 与 Δ δ p 之间存在近似线性关系。与其他铝合金的比较表明,材料对 da/dN - Δ δ p 关系有显著影响。从平面应变状态到平面应力状态的变化由于裂纹闭合而降低了 FCG 速率。在平面应变状态下,应力比在 R = 0.1 – 0.7 范围内的影响很小,这也是因为没有裂纹闭合。最后,对塑性 CTOD 和裂纹处的累积塑性应变进行了比较