如今,人工智能越来越多地被用于帮助人类专家在高风险场景中做出决策。在这些场景中,完全自动化通常是不可取的,这不仅是因为结果的重要性,还因为人类专家可以利用他们的领域知识来补充模型,以确保任务成功。我们将这些场景称为人工智能辅助决策,其中人类和人工智能各自的优势共同优化联合决策结果。成功的关键在于根据具体情况适当校准人类对人工智能的信任;知道何时信任或不信任人工智能可以让人类专家适当地运用他们的知识,在模型可能表现不佳的情况下改善决策结果。本研究对人工智能辅助决策进行了案例研究,其中人类和人工智能单独具有可比的表现,并探索揭示特定案例模型信息的特征是否可以校准信任并提高人类和人工智能的联合表现。具体来说,我们研究显示特定预测的置信度得分和局部解释的影响。通过两项人类实验,我们表明,置信度得分可以帮助校准人们对人工智能模型的信任,但仅靠信任校准不足以改善人工智能辅助决策,这也可能取决于人类是否能够带来足够的独特知识来弥补人工智能的错误。我们还强调了在人工智能辅助决策场景中使用局部解释的问题,并邀请研究界探索新的可解释性方法,以校准人类对人工智能的信任。