上下文。太阳系中气体巨头的内部模型传统上假设一个完全对流的分子氢包膜。,朱诺任务的最新观察结果表明,木星的分子氢包膜可能会耗尽碱金属的耗竭,这表明稳定的辐射层可能存在于千巴水平。最近的研究表明,深稳定的层有助于调和各种木星观测,包括其大气水和二线丰度以及其区域风的深度。但是,用于推断稳定层的不透明表通常被过时且不完整,从而使深辐射区域所需的精确分子氢包膜组成不确定。目标。在本文中,我们确定可以导致木星和土星在千巴尔水平的辐射区形成的大气组成。方法。我们计算了覆盖高达10 5 bar的压力,包括太阳系气体巨头中最丰富的分子以及自由电子,金属氢化物,氧化物和原子质物种的贡献,其中包括最丰富的分子。这些表用于计算木星和土星分子氢化膜的罗斯兰均值不透明,然后将其与维持对流所需的关键平均不透明度进行了比较。结果。我们发现,辐射区的存在是由木星和土星大气中的K,Na和Nah的存在控制的。相比之下,对于土星,K和Na所需的丰度低于10-4倍太阳能。对于木星,K和Na的元素丰度必须小于10 - 3倍太阳能才能形成辐射区。
核电站的布局是基于单个机组(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机满足 III 类应急电源要求,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
核电站的布局是基于单个单元(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机为满足 III 类应急电源要求而提供,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
核电站的布局是基于单个机组(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机满足 III 类应急电源要求,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
核电站的布局是基于单个机组(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机满足 III 类应急电源要求,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
核电站的布局是基于单个机组(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机满足 III 类应急电源要求,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
在印度,有关建立和运行辐射源和装置的活动须按照《1962 年原子能法》的规定进行。为确保公众和职业工作者的安全,原子能管理委员会负责制定安全标准以及为此类活动制订规章制度。因此,委员会制定了安全标准、安全规范和相关的安全指南和安全手册来涵盖这些设施的监管方面。印度的辐射设施涵盖各种各样的放射源和辐射产生设备,涵盖从低危险到高危险潜在源和活动。为确保辐射工作者和广大公众的安全,这些设施必须遵守相关原子能管理委员会安全规范和标准中规定的设计和操作要求。此外,还要求对工作者在工作过程中进行人员监护。从事不同类型辐射设施的辐射工作人员的工作概况差异很大,这取决于辐射区的工作类型,即工作时间、辐射源的活动/强度、处理辐射源的距离。因此,职业暴露监测可以通过确定或估计辐射剂量来进行,具体取决于与实践类型、处理的辐射源/活动和工作概况等各种因素相关的潜在暴露。本文件提供了辐射设施中适当的人员监测的实践建议,其中考虑到操作安全方面、危险潜力和参与实践的辐射工作人员的工作概况。它有望帮助放射安全官员就人员监测、辐射工作人员培训和剂量记录维护向持牌人提供建议。为了制定这些指导方针,AERB 利用了其在辐射设施进行的多次监管检查和审查中获得的监管见解,以及来自公用事业、机构的放射安全官员和其他人员的反馈。 AERB 感谢 NODRS 团队、RP& AD、BARC 在制定本文档过程中提供数据和观点的支持。
“一项旨在研究地球大气层内外飞行问题和其他目的的法案。”凭借这个简单的序言,美国国会和总统于 1958 年 10 月 1 日成立了美国国家航空航天局 (NASA)。NASA 的诞生与国防压力直接相关。第二次世界大战后,美国和苏联卷入了冷战,这是一场围绕不结盟国家意识形态和盟友关系的广泛竞争。在此期间,太空探索成为竞争的主要领域,被称为太空竞赛。在 20 世纪 40 年代后期,国防部开展了火箭和高层大气科学研究,以确保美国在技术领域的领先地位。美国总统德怀特·艾森豪威尔批准了一项计划,将一颗科学卫星送入轨道,作为 1957 年 7 月 1 日至 1958 年 12 月 31 日国际地球物理年 (IGY) 的一部分,这是一项收集地球科学数据的合作努力,这标志着向前迈出了重要一步。苏联迅速效仿,宣布了其卫星的轨道计划。1955 年 9 月 9 日,海军研究实验室的先锋计划被选中支持 IGY 工作,主要是因为它不会干扰高优先级的弹道导弹开发计划。它使用非军用维京火箭作为基础,而陆军提议使用红石弹道导弹作为运载火箭。1955 年下半年和 1956 年全年,先锋计划都备受关注,但该计划的技术要求太高,而资金水平太低,无法确保成功。1957 年 10 月 4 日,苏联发射了世界上第一颗人造卫星 Sputnik 1,作为其 IGY 参赛作品,引发了一场全面危机。这给美国舆论带来了“珍珠港”效应,制造了技术差距的假象,并推动了增加对航空航天事业、技术和科学教育计划的支出,以及成立新的联邦机构来管理航空航天研究和开发。更直接的是,美国于 1958 年 1 月 31 日发射了第一颗地球卫星,当时探险者 1 号记录了环绕地球的辐射区的存在。这些区域受地球磁场影响,被称为范艾伦辐射带,部分决定了大气中的电荷和到达地球的太阳辐射。20 世纪 50 年代末和 60 年代初,美国还开始了一系列月球和行星科学任务。作为斯普特尼克号危机的直接影响,NASA 于 1958 年 10 月 1 日开始运营,将之前的美国国家航空咨询委员会原封不动地并入其中:其 8,000 名员工、每年 1 亿美元的预算、三个主要研究实验室(兰利航空实验室、艾姆斯航空实验室和刘易斯飞行推进实验室)和两个较小的测试设施。它迅速将其他组织纳入新机构,尤其是海军的空间科学组
课程注释原子吸收光谱法(AAS)。该方法的基本面。使用火焰雾化。设备。辐射源。火焰和燃烧器。分析,灵敏度,主要问题和干扰的表现。AAS使用电热雾化(石墨室)。分析的性能。石墨室内蒸发机制。应用AAS用于分析不同类型的样品的分析。电感耦合等离子体光学发射光谱法(ICP-OES)。ICP-OES,主要特征和应用领域的基本面。原子/离子排放,定性和定量分析的起源。电感耦合等离子体作为激发源。设备,光谱仪类型,分析性能,主要优势和缺点。干扰。样品制备。其他激励来源。电感耦合等离子体质谱法(ICP-MS)。ICP-MS,设备和光谱仪类型的基本面。血浆作为离子源的作用。ICP-MS的灵敏度。主要优势和缺点,干扰。 分析的性能和对不同类型样本的应用。 原子荧光光谱法(AFS)。 AFS的基本原理,主要特征。 设备,主要优势和缺点。 分子光谱。 光谱法的基本原理,主要。 基本概念。 分子的电子结构。ICP-MS的灵敏度。主要优势和缺点,干扰。分析的性能和对不同类型样本的应用。原子荧光光谱法(AFS)。AFS的基本原理,主要特征。设备,主要优势和缺点。分子光谱。光谱法的基本原理,主要。基本概念。分子的电子结构。分子的电子结构。能量水平,能量转变和相应的光谱电子吸收光谱。有机化合物的紫外光谱,其结构,从光谱获得的信息。溶剂,结合和结构变化对吸收带的强度和位置的影响。紫外光谱。吸收带,其性质。实际应用。定量分析。振动光谱。方法的原理。分子键的振荡,其数学描述。红外光谱。近,远,主要的红外辐射区。对红外光谱的解释。影响吸收峰的位置,宽度,强度的因素。样品制备,设备和记录技术。拉曼光谱法。该方法的本质,是研究的对象。从拉曼光谱获得的信息。表面增强的拉曼光谱。质谱法。技术和原理。获得分子离子的方法。 分裂规则和机制,来自质谱的信息。 质谱与色谱法的组合。 不同分析方法的组合。 阅读清单1。 J. Nolte,ICP发射光谱法;实用指南,威利,2003年。 2。 L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.获得分子离子的方法。分裂规则和机制,来自质谱的信息。质谱与色谱法的组合。不同分析方法的组合。阅读清单1。J. Nolte,ICP发射光谱法;实用指南,威利,2003年。 2。 L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.J. Nolte,ICP发射光谱法;实用指南,威利,2003年。2。L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.L. Ebdon,E.H。 Evans,A。Fisher,S.J。Hill,《分析原子光谱概论》,Wiley,1998年。3。4。S.M.S.M.J. A.C. Broekaert,带有火焰和等离子体的分析光谱,Wiley,2002。NELMS,ICP质谱手册,Blackwell Publishing,2005年。5。L.H.J. Lajunen,P。Peramaki,《原子吸收和排放的光谱化学分析》,第二版,皇家化学学会,2004年。 6。 H. Hesse,A。Meyer,A。Zeeh,有机化学中的光谱方法,Thieme,1997年。 7。 R. M. Silverstein,F.X。 Webster,有机化合物的光谱鉴定,Willey,1997 8。 P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。 9。 D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。 R.Kellner,J.M. Mermet,M。Otto,H.H。 widmer,分析化学,1998L.H.J.Lajunen,P。Peramaki,《原子吸收和排放的光谱化学分析》,第二版,皇家化学学会,2004年。6。H. Hesse,A。Meyer,A。Zeeh,有机化学中的光谱方法,Thieme,1997年。7。R. M. Silverstein,F.X。 Webster,有机化合物的光谱鉴定,Willey,1997 8。 P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。 9。 D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。 R.Kellner,J.M. Mermet,M。Otto,H.H。 widmer,分析化学,1998R. M. Silverstein,F.X。Webster,有机化合物的光谱鉴定,Willey,1997 8。P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。9。D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。R.Kellner,J.M.Mermet,M。Otto,H.H。widmer,分析化学,1998