电池和电化学电容器 (EC) 对于电动汽车、电网和移动设备等应用至关重要。然而,现有电池和 EC 技术的性能无法满足汽车工业、航空航天和利用可再生能源的电网存储等日益增长的市场对高能量/高功率和长耐用性的要求。因此,改善储能材料的性能指标势在必行。在过去的二十年里,辐射已经成为一种改变储能材料功能的新手段。人们普遍存在一种误解,认为高能离子和电子的辐射总是会对目标材料造成辐射损伤,这可能会阻碍其在电化学储能系统中的应用。但在这篇评论中,我们总结了辐射对电化学储能系统材料影响的最新进展,以表明辐射对各种类型的能源材料都有有益和有害的影响。先前的研究表明,对控制由此产生的微观结构、缺陷产生、界面特性、机械性能和最终电化学性能的能量损失机制的基本理解至关重要。我们讨论辐射效应的类别如下:1) 缺陷工程,2) 界面工程,3) 辐射诱导降解,4) 辐射辅助合成。我们分析了重要趋势,并提供了对当前研究和未来研究方向的看法和展望,这些研究旨在利用辐射作为增强电池材料合成和性能的方法。
对脑转移(BM)立体定向放射外科手术(SRS)的临床管理通常具有挑战性,尤其是对于单个或寡核-BM,对全身治疗难治,而没有任何中央神经外神经系统(CNS)活性疾病(孤立的CNS失败)[1,2] [1,2]。确定肿瘤再生(真实进展),辐射损伤或变性肿瘤的瞬时增大(伪产生)通常很困难,并且诊断标准仍然有争议且不清楚[1-3]。与单或多裂(FR)SRS(RE-SRS)的重新辐照是这种情况的可用治疗选择之一,被认为具有可行的肿瘤组织的优势;目标定义,边缘剂量分馏和病变边界外部和内部的剂量梯度在设施之间差异很大,而最佳方案仍未确定[3,4]。鉴于不适合医疗管理的辐射损伤的风险,通常会针对RE-SRS施用一种非治愈性和保守剂量[1,2]。此外,经常使用相对均匀的靶剂量,尤其是在相当大的基于Linac的SR中,无论它是初始治疗还是重新治疗[5]。SRS失败后的持续可行组织可能与脑肿瘤界面差不良有关,并且对深刻侵袭周围的实质有很高的倾向,从而导致治疗性缓解[6]。
在小鼠中,肠道簇细胞被描述为一种长期寿命的有丝分裂后细胞类型,其中30个已经鉴定出了两个不同的子集,称为Tuft-1和Tuft-2 1。通过结合对31次人类肠道切除材料和肠道器官的分析,我们确定了四个不同的32个人簇细胞状态,其中两个与它们的鼠重叠。我们表明,簇簇33细胞的发育取决于Wnt配体的存在,簇状细胞数在白介素(IL)-4和IL-13暴露后迅速增加34,如小鼠2-4中报道。这35个是通过预先存在的簇细胞的扩散而来发生的,而不是通过从干细胞中增加的36产生来发生。的确,在胎儿和成人37人类肠道中,增殖性簇细胞在体内都存在。单个成熟的增殖簇细胞可以形成含有所有38种肠上皮细胞类型的器官。与干细胞和祖细胞不同,人簇细胞生存39辐射损伤,并保留产生所有其他上皮细胞类型的能力。因此,缺乏簇簇细胞的40种手机无法从辐射诱导的损伤中恢复。因此,41个簇细胞代表了人类损伤诱导的储备肠干细胞库。42
辐射损伤来自融合演示反应堆材料的高能中子辐照,必须经过良好的测试和验证。为此,预测了国际融合材料辐射设施(IFMIF)直到几年前[1]。先进的融合中子源(A-FNS),以实现对日本融合反应堆材料的融合样中性辐照试验的早期实现。在欧洲的类似原因出于类似的原因,已经开始了面向IFMIF的中子源(Dones)项目[3]。a-fns将两个IFMIF型加速器降低到一个,因此将其配置为一个Deuteron加速器,液态锂目标和测试设施。即使总中子通量从IFMIF发生变化,中子IRRA diation数据减少了激活铁素体马氏体钢(RAFM),例如F82H(例如F82H),使用融合样中性子基于blandet结构材料测试模块(BSMTM)的前景,我们先前的研究基于A-FNS [4]。a-FNS提供了八个测试模块,以获取融合反应堆材料的Irradi数据,不仅用于毯子结构材料,而且还获得了毯子功能材料,例如中子乘数和tripium育种者。此外,在测试模块辐射之前进行了一个用于中子通量测量的模块,并提供了四个用于其他应用目的的测试模块,例如制造医疗同位素,为半导体提供了辐射测试。图1显示了带有屏蔽混凝土塞的融合反应堆材料的A-FNS测试模块。BSMTM的概念设计[4],毯子核财产
𝛽 -Gallium氧化物(𝛽 -GA 2 O 3)对电子应用显示了巨大的希望,特别是在未来的空间操作设备中,长时间暴露于严酷的辐射环境中。这项研究的重点是这种材料中辐射损伤的关键,但尚未完全探讨,例如阈值位移能和各种辐射诱导的Frenkel Pairs的形成。根据我们的机器学习势分析超过5,000个分子动力学模拟,我们得出的结论是,两个GA位点的阈值位移能量,四面体(22.9 eV)和八面体(20 eV)(20 eV),差异比三个不同的O位点(在17 ev之间)的值强,而在17 ev和17.4 ev之间仅相同。阈值位移能量的映射揭示了所有五个原子位点的位移的显着差异。我们新开发的缺陷识别方法成功地将多个Frenkel对类型分类为𝛽 -GA 2 O 3,在O1位点具有超过十个不同的GA和两个主要O的O型ga和两个主要O的O型O型O分裂。最后,计算出的重组能屏障表明,fenkel对比GA更可能重新组合。这些见解对于理解GA 2 O 3中的辐射损伤和缺陷的形成至关重要,为GA 2 O 3基于具有较高辐射电阻的基于GA 2 O 3的电子产品的设计提供了基础。
第一天的亮点是太阳能电池:来自 III-V 欧盟/美国专家的前沿演讲展示了电池多样化趋势:更多结以提高效率,更薄的电池以节省重量,还有抗辐射甚至更低成本的选择。对物质中详细辐射损伤机制的见解引出了关于更具颠覆性的潜在空间光伏技术的讨论:在设备层面采用超薄或纳米线方法,但也采用钙钛矿等更奇特的材料。第二天,专门讨论太阳能电池阵列,同样充满了引人入胜的亮点。在介绍回顾了太阳能系统中光伏的各种限制和机会之后,解决了具体问题:从互连器热机械行为、微聚光系统到 STI 部署机制的开发。讨论了立方体卫星和 OneWeb 等大型卫星星座的光伏解决方案,重点关注低成本,包括陆地硅。本次会议结束了创新高功率柔性太阳能电池阵列用于地球静止任务的现状和挑战。研讨会结束时,来自行业(AZUR SPACE、Airbus DS、DHV 技术)和研究机构(CEA-INES、CNES、Fraunhofer ISE 和 NREL)的 7 位专家参加了圆桌会议,总结了空间光伏研发的主要趋势,以解决竞争力、低成本和创新问题。组织团队衷心感谢所有参与者让这次活动生动有趣且成果丰硕。
电子-分子碰撞过程指的是分子捕获低能电子(即能量高达 ∼ 20 eV)形成短暂、不稳定的分子阴离子,然后解离成几个碎片(一个负离子,其他都是中性),这是一个长期研究的过程,称为解离电子附着(DEA)。DEA 是基于电子-分子碰撞的基本相互作用之一 [1-8],在凝聚态物质 [9-12]、气态电子 [13] 到低能等离子体 [14] 等多个领域中发挥着重要作用。自然环境中 DEA 与分子相关的低能电子通常是物质与高能光子或粒子之间初级相互作用的副产物。研究表明,这些电子在生物过程中起着关键作用,例如引发 DNA 链断裂和其他 DNA 解离过程 [ 15 – 18 ] 以及蛋白质的辐射损伤 [ 19 ]。甲酰胺 (HCONH 2 ) 被广泛认为是研究蛋白质和肽化学的原型模型分子,因为它具有简单而丰富的结构,其中包括一个酰胺键。甲酰胺分解成其他值得注意的简单有机分子(例如 CH、HCN、HCNO 等)已在实验和理论环境中得到广泛研究。甲酰胺由许多复杂生物分子(如蛋白质和核酸)的祖先组成,被认为是简单生物分子进化为复杂结构的重要环节。此外,甲酰胺由于其 NC 酰胺键而引起了广泛关注。这一特征使甲酰胺成为研究电子捕获的典型分子
在介电绝缘的超导磁体中需要聚合物[1],以及浸渍由NB 3 SN等脆性导体制成的磁铁线圈[2]。在未来的粒子加速器中,例如未来的圆形对撞机(FCC)项目[3,4],磁体将暴露于日益高的辐射剂量。为例,HL-LHC [5]内三重线圈中的预测峰剂量为30 mgy [6]。环氧树脂是具有良好的介电和机械支撑物的热固性聚合物,这些聚合物通常用于磁铁的大管浸没,用于电动机和发电机的线圈绕组,以及作为纤维增压组合的基质材料。这种环氧树脂的辐射损伤已被广泛研究[7]。以前,我们已经描述了不同环氧树脂系统在环境空气中辐射期间潜在用于超导磁体的老化[8]。由于超导磁体中的聚合物在没有氧气的情况下在低温温度下被照射,因此在本研究中,我们研究了辐射温度和大气的影响。为此,我们在三种不同的环境中辐射了相同的环氧树脂:在20℃,在环境空气或惰性气体中,并浸入4.2 K的液态氦气中。为了评估衰老过程并确定衰老率,我们采用动态机械分析(DMA)。DMA存储和损耗模量演变揭示了交联和链分裂对玻璃过渡温度(T G)的竞争影响以及大分子交联之间的分子量。辐照环境,尤其是辐射温度,可能会大大影响辐射引起的环氧树脂衰老。
这项研究将开发用于梁拦截设备(例如梁窗和粒子生产目标)的高级材料,以提高下一代加速器目标设施的性能,可靠性和运行寿命。新型高渗透合金和纳米纤维材料的微观结构和热机械性能将被专门定制,以在2.4兆瓦的长基线中微子设施(例如2.4兆瓦的长基线中微子设施)中实现高功率二级粒子束的产生。该研究项目将将束内实验与互补的模拟相结合,以开发辐射损伤和热休克耐受材料,这是两种领先的横切材料挑战,这些挑战破坏了光束裂伤设备的性能和寿命。迭代模拟,以优化材料组成,物理性能和光束诱导的热机械响应将基于既定的功绩指导材料设计和制造过程。随后使用低能离子和原型高能质子进行材料辐照实验,然后进行广泛的辐照后材料表征,将评估和符合将来在将来的高功率目标设施中使用的材料。这些新型的光束裂伤材料不断受颗粒梁的轰击,必须承受横梁强度的缩放顺序增加。使用常规材料已经限制了实验范围,超出当前最新材料的稳健材料的发展至关重要。新颖的材料将使未来世界领先的加速器设施的可靠运行能够支持新的高能物理学科学发现。
伦敦学院,高尔街,伦敦,WC1E 6BT,英国# 通讯作者:d.duffy@ucl.ac.uk 摘要 预测材料在各种辐照场景下结构变化的能力将对许多科学和技术领域产生积极影响。现有的大型原子系统建模技术(如经典分子动力学)因忽略电子自由度而受到限制,这限制了它们的应用范围,即主要与原子核相互作用的辐照事件。另一方面,从头算方法包括电子自由度,但所需的计算成本限制了它们在相对较小的系统中的应用。旨在克服其中一些限制的最新方法发展基于将原子模型与电子能量连续模型相结合的方法,其中能量通过电子停止和电子-声子耦合机制在原子核和电子之间交换。这种双温度分子动力学模型使得模拟电子激发对具有数百万甚至数亿个原子的系统的影响成为可能。它们已被用于研究金属薄膜的激光辐照、金属和半导体的快速重离子辐照以及金属的中高离子辐照。在这篇综述中,我们描述了双温度分子动力学方法及其实施所需的各种实际考虑。我们提供了该模型在适应电子激发的多种辐照场景中的应用示例。我们还描述了在模拟中包括由于电子激发而引起的原子间相互作用的改变的影响所面临的挑战以及如何克服这些挑战。关键词辐射损伤;双温度模型;分子动力学;电子效应;激光辐照;快速重离子