windows.net › files PDF 1995年12月1日 — 1995年12月1日 国际发展署 (AusAID) 资助瓦努阿图的航空磁/辐射测量。 据称,航空的可用性。
光学、光学技术和光子学为解决 21 世纪社会当前和未来的重大挑战提供了不可或缺的关键技术。因此,PTB 的光学部门将其研究和开发任务调整为能够最有效地利用这些关键技术用于未来的计量服务。PTB 的光学部门将其研究、开发和服务任务集中在长度和尺寸计量、辐射测量和光度测量以及时间和频率领域的计量上。该部门实现了国际单位制 (SI) 的三个基本单位坎德拉、米和秒(与这三个领域相对应),并将它们及其派生单位以足够的不确定度传播给客户。自 2013 年初以来,该部门根据以下四个部门组织工作:光度测定和应用辐射测量、成像和波动光学、长度单位和量子光学以及时间和频率。此外,在 PTB 成立了 QUEST 研究所,隶属于汉诺威莱布尼茨大学量子工程和时空研究卓越集群中心。下面,我们将介绍去年光学部门和 PTB QUEST 研究所四个部门取得的重要成果和特殊发展。
作为丹麦国家计量研究院 DFM 光子学部门的负责人,David 领导着激光光谱、光纤传感器、化学传感和光学辐射测量领域的计量和研究活动,包括开发单光子探测器校准方法。David 参与了人工智能和测量数据模型的规范工作,目前正在为 CEN/CENELEC JTC22 和 IEC/ISO JTC3 中的量子技术标准化做出贡献,其中 David 是 ahG7 量子使能技术召集人。
环境。测量技术、数据处理和辐射图的编制都会导致数据偏差。所用仪器的技术参数、校准设施和仪器校准方法、几何形状、密度和现场辐射测量模式、数据处理、数据调平及其图形表示都会对结果产生重大影响。如果使用地图评估天然辐射环境,则报告的伽马剂量率值的可靠性必须是可以接受的,并应进行检查。1995 年出版的捷克共和国 1:500 000 辐射图以伽马剂量率表示,基于区域和详细的机载总数(1957-1959 年)和伽马射线光谱法(从 1976 年起)测量,由地面调查完成。应用反向校准将数据转换为剂量率并调平地图。捷克共和国由岩浆岩、沉积岩和变质岩形成的区域陆地辐射范围为 6-245 nGy.h" 1 ,平均值为 65.6 ± 19.0 nGy.h" 1 。通过地面伽马射线光谱区域横断面对辐射测量图中报告的数据进行了初步验证,结果显示地图数据水平良好,而平均偏差 ± 13.8 nGy.h" 1 说明了各个地点和地质环境的预期差异。
亮点 - ASTROlas 特点和设计参数:• 抗辐射以及紧凑坚固的机械设计• 用于数据处理的单个 FPGA• 针对激光检测优化的广角镜头(>100° FoV)• 四个光谱通道,范围为 0.4...1.7µm:- 用于激光点成像的专用镜头- 每个通道的带宽和中心波长均可调整• 激光脉冲检测能力,区分脉冲和恒定激光束• 激光功率密度测定(辐射测量)• 2D 图像和检测到的激光束的叠加
1 简介 光学衍射是物理学中一个成熟的课题。众所周知,存在许多不同复杂程度的理论处理方法,从惠更斯小波方法到麦克斯韦方程的数值解。然而,在几个具有实际重要性和/或理论意义的情况下,衍射的全部影响要么尚未计算到所需的精度,要么尚未测量。此外,虽然衍射通常被认为是光学测量中的一个复杂因素,但衍射对设备尺寸的敏感性提出了衍射是否能在测量中发挥有用和直接作用的问题。衍射在计量学中的潜在利用是一条尚未探索的途径。辐射测量中最重要的测量之一是辐射度的测量。由于需要某种孔径才能进行这种测量以构建立体角,因此必须准确计算衍射效应,以实现最高精度的辐射测量。即使是最复杂的一级标准辐射计也需要衍射校正,该辐射计通过创建伪无限辐射源来最大限度地减少衍射效应。目前,衍射是限制一级和二级标准辐射测量精度的主要不确定性之一。对于辐射计中使用的相对较大的孔径尺寸,经典衍射理论原则上是足够的,尽管需要做工作来实现较低的计算不确定性。另一方面,对于接近几个波长尺寸的非常小的孔径,大多数衍射理论的假设都失效了。特别是色差和偏振效应变得明显,并且很难实现具有有用精度的计算和实验。尽管如此,超小孔径阵列已被考虑用作光谱滤波器。中等尺寸(即100 个波长量级)的孔径衍射在理论上是可处理的,因为小尺度效应可以忽略不计,而远场情况通常可以大大简化方程式,在实验室中是可以实现的。在这种情况下,存在一种有趣的可能性,即从衍射“反向”工作以确定孔径本身的尺寸。作为一种基于光使用的新型尺寸测量技术,这在计量学上很重要。是否具有足够的测量精度值得怀疑这些考虑导致了对衍射中未解决问题的双管齐下的研究:利用衍射测量孔径大小,并开发更精确的辐射测量衍射代码。2 衍射孔径测量 2.1 衍射孔径测量:理论 基于衍射的孔径测量技术利用了众所周知的事实,即远离衍射孔径,衍射图案的光场是孔径平面中光场的傅里叶变换。1 原则上,远处的衍射场(幅度和相位)可以通过快速傅里叶变换代码进行测量和变换,以产生完整的二维孔径函数。然而,在实践中,测量光场的相位会给实验装置带来很大的复杂性。
过去,月球探测任务几乎完全依赖于直接对地 (DTE) 通信,同时使用来自地球的测距辐射测量进行导航。早在阿波罗任务初期(Farquhar,1971),月球中继基础设施的优势就已初见端倪,中国嫦娥四号任务最近的月球背面着陆也证明了这一点(Gao 等人,2019;后者专注于将遥测数据传送到地面,而不是提供独立的轨道确定和导航解决方案)。月球探测任务数量的增长趋势正在产生部署月球通信和导航基础设施以支持国际社会的需求。这反过来又可以成为更多公共和私人全球地月计划的催化剂。
您要求更多 - IABG为您提供了真空和辐射测量部门的更多互补测量能力,我们的服务包裹都在围绕我们的服务包。此外,我们在残余气体分析,建立泄漏率,污染测量以及测量局部和光谱辐射强度分布的领域具有丰富的经验。通过使用我们的IABG开发的软件TeleDisplay,我们的客户能够通过全球互联网进行热真空测试期间获得和评估测试数据。我们还建议客户开发测试程序。,不用说质量保证方法是IABG的标准功能。
本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 黑体辐射源是可计算的辐射源,常用于辐射测量、温度传播和遥感。尽管黑体源和辐射计无处不在,但它们的系统结构却非常复杂。我们设想了一种新的、主要的黑体辐射测量方法,即使用可极化量子系统集合(如里德堡原子和双原子分子)进行测量。使用这些精妙的电场传感器进行量子测量可以实现主动反馈、改进设计,并最终降低黑体标准的辐射和热不确定性。便携式、无需校准的里德堡原子物理包还可以补充各种经典辐射探测器和温度计。量子测量和黑体测量的成功融合为黑体物理学提供了一个新的基本范式。