同时为定向进化更亮的变体提供了新模板。荧光蛋白的亮度被定义为它们的摩尔消光系数与量子产率的乘积,它们分别是它们的发色团吸收光的能力和将吸收光转换成发射光的效率。虽然增加这两个性质中的任何一个都会成比例地增加亮度,但是人们还不太了解 RFP 结构的变化如何有益地影响它们的消光系数,这使得通过合理设计预测有益突变变得复杂。另一方面,已知荧光团的量子产率与它们的构象灵活性直接相关,8 – 10 因为运动会将吸收的能量以热量而不是光子的形式耗散。对于荧光蛋白,研究表明,通过亚甲基桥的扭转,发色团对羟基苯亚甲基部分的扭曲会导致非辐射衰减。10,11 因此,应该可以通过设计突变来限制对羟基苯亚甲基部分的构象灵活性,从而提高 RFP 亮度,从而提高量子产率。在这里,我们使用 Triad 软件 12 进行计算蛋白质设计,以优化暗淡单体 RFP mRojoA(量子产率 = 0.02)中发色团口袋的包装,我们假设这会使发色团变硬,从而提高量子产率。为此,对发色团对羟基苯亚甲基部分周围的残基进行了突变
低维杂交金属卤化物正在成为一种高度有希望的单组分发射材料,用于其自我捕获的激子(STES)的独特宽带发射。尽管在这些金属卤化物的发展方面取得了长足的进步,但仍有许多挑战需要解决对结构 - 专业关系的更好的基本了解,并意识到这类材料的全部潜力。在此,通过压力调节,在瓦楞1D杂交金属卤化物C 5 n 2 H 16 Pb 2 Br 6中实现了接近100%的光致发光量子量产率(PLQY),该结构具有高度扭曲的结构,初始PLQ为10%。压缩减少了Ste状态和基态之间的重叠,从而导致抑制声子辅助的非辐射衰减。PL进化被系统地证明是由压力调节的激子 - Phonon耦合控制的,可以使用Huang-Rhys因子s进行量化。Detailed studies of the S -PLQY relation for a series of 1D hybrid metal halides (C 5 N 2 H 16 Pb 2 Br 6 , C 4 N 2 H 14 PbBr 4 , C 6 N 2 H 16 PbBr 4 , and (C 6 N 2 H 16 ) 3 Pb 2 Br 10 ) reveal a quantitative structure–property relationship that regulating S factor toward 28 leads to the maximum emission.
简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是
固体对低温的光冷却是一个重要的开放挑战。当前的方法[1-3]是稀土掺杂玻璃中的抗荧光[4]。在此过程中,稀土离子会吸收光,从而产生激发的电子状态,然后在以较高频率重新调用光之前吸收声子。尽管非辐射衰减和背景吸收的竞争加热,但仍达到了低至91 K的温度[3]。这已达到可以有效吸收的声子设置的50 - 100 K [4]的基本极限。相同的特征声子能量也限制了在室温半导体中报道的光学声子的吸收可能的冷却[5,6](另见参考文献[7]),尽管已经考虑使用各种技术来提高性能以及不同的冷却方案[2,3,6,8 - 10],但它们并未解决这个问题。达到较低温度的一条途径可利用半导体中的连续电子分散体[11-15],但尚未达到[7]。在这封信中,我们提出了一种机制,使用合适的缺陷状态的Quasiresonant激发可以克服固态激光冷却的温度底。我们专注于钻石的IV组颜色中心,尤其是带负电荷的硅空缺缺陷(SIV)。该缺陷的状态包括一个地面状态和激发状态歧管,并在两者之间进行偶极运动光学转变[16-19]。对于较弱的驾驶,此过程非常敏感。在足够低的温度下,光谱显示了四条线,其中两条可以互环驱动以产生一种抗孔的形式。但是,为了更强的驱动动力学,动力学会受到激光态的状态而不是原始的电子本征态的控制。通过自动镇效应[20]形成这些状态,导致更复杂的冷却过程,许多
*对以下的通信:然而,由于这些区域中的非胎脂衰减率呈指数增长,这种现象称为能量差距定律,因此很少出现明亮的低能量排放。最近的文献强调了最大程度地减少骨骼模式以防止非递增的衰减率的重要性,但是这些地区的大多数有机发光都利用大型的,共轭的支架,其中包含许多C = C模式。在这里,我们报告了一个紧凑的,电信的脚手架,四硫酸盐-2,3,6,7-四苯甲酸酯或TTFTS,它显示出显着的空气,水和酸稳定性,表现出记录的量子产率和亮度值,并在环境条件下保持量子相干性。这些特性是通过有条理的硒取代来启用的,硒的替代可以转移发射,同时将骨骼振动转移到降低能量。这个新的脚手架验证了重型杂种替代策略,并建立了新的一类明亮的电信发射器和强大的量子。在NIR区域发射的分子在包括生物医学成像在内的几种应用中有望,因为它们掉入了组织透明区域,在该区域中,散射和自荧光最小化。1-12此外,发射到NIR深处的分子也落入电信带中,在光纤中衰减最小化,因此它们非常适合通信和量子信息科学应用。113–15在这些波长下运行的有机基因仪需要大型的共轭支架,以将吸收和发射转移到这些低能区域。1,10,16–20这些复杂的支架引入了多种振动模式,经常具有实质性νC– H和νC= C特征,从理论上讲,这些模式会导致非辐射衰减速率的指数增加,因为它们的能量差距会降低,这是一种已知的能量GAP法律的经验性观测。21–28因此,典型的分子染料具有极低的光致发光量子产率(PLQ),因为它们的过渡能降低。
有机发光二极管 (OLED) 在过去二十年里彻底改变了显示器行业 1 。尽管被广泛应用,但这些设备仍有很大改进空间,例如,现有技术的能源效率。市场迫切需要更深的红色和更高的色纯度,而传统发射器很难满足这一需求 2、3 。需要一类具有更长波长的新型红色掺杂剂,但简单的能隙定律考虑可以解释,由于非辐射衰减增加导致的效率降低是不可避免的 4、5 。因此,发光效率是商用红色掺杂剂最关键的材料特性。由于发射特性的微小变化往往会加剧效率下降,可能的解决方案是考虑主体-掺杂剂组合以更好地取向过渡偶极矩 6、7 ,或用功能团装饰发射极而不会过度改变发色团支架 8 ,但迄今为止尚未取得决定性的进展。一种潜在的解决方案是采用带有三个双齿配体的杂配体 Ir 配合物,其中两个主要负责发光,一个是支持辅助配体,不直接参与磷光。目标是通过改变辅助配体来消除非生产性衰变途径,从而对发光特性产生最小的影响 9 。在各种红色掺杂剂中,携带双齿苯基吡啶 (ppy) 型配体的 Ir(III) 配合物成为一类重要的发射体 10 ,典型的辅助配体是乙酰丙酮 (acac) 衍生物 2 。尽管使用辅助配体来控制掺杂剂化学行为的前景很诱人,但成功实施涉及辅助配体的合理设计策略却极为罕见 11 。在此采用详细的计算模型,我们发现除了延长 Ir – N 键之外,涉及配位层角度的结构变化也会导致辐射态的不良失活。利用这些精确的计算机模型的见解,我们推导出并通过实验证实了一种通用的设计策略。虽然 DFT 模型不一定准确,但它们提供了易于解释和概念化的精确信息。
石墨烯量子点(GQD)的荧光性能,即小型单层或多层石墨烯含量[1,2,2,2,3,4,5,6,6,7,7,7,8,9,10,11,12]光伏[3,10],传感[5,9]或光催化[2,5,10]设备。在这些特性的核心上,发射状态的性质受到了多种自上而下和自下而上的可用合成技术的阻碍。可能的候选物可能范围从固有的π -π∗转变(在固定的SP 2系统中)到包括e在内的边缘状态。 g。富含氧气的官能团或碳样锯齿形位点。结果,影响发射波长的主要因素仍在争论。原始的GQD特性已在密度功能理论(DFT)和时间依赖性的TD-DFT水平上探索,并清楚地强调了通过量子结合的量子和降低GQD大小的量子的开放和光学间隙[13,14]。进一步的工作证明了功能化[15、8、14、16、17、18]和/或掺杂[14、19、20、21、22]可以显着影响GQD的电子和光学特性。这些研究阐明了可以在经过实验上观察到的各种光致发光特性,鉴于所选的合成途径和边缘处理,但据报道了原始GQD的一些有趣的特性[23,24,25,26,27,28]。特别是发现最低激发的光学过渡偶极子。这可以在吸收峰和发光峰之间的较大的stokes移动中表现出来,或者,如果存在有效的非辐射衰减通道,则在光致发光的淬灭中。这些特性与所考虑的理想拟光的高几何对称性相关[24,26,28]。在本研究中,我们表明,原始GQD中的低谎言深度激发的存在是植根于基础石墨烯格子和电子孔手性对称性的六边形对称性的一般特性。此外,此属性也保留给与高对称形状显着偏离的结构。这些结论是由从头算在现实的GQD上进行的多体绿色功能计算来确认的。我们认为,手性对称性施加了一定的能量量表,即使空间对称为
摘要:铅提供有效的屏蔽层抗辐射,因为铅具有高密度和原子数,从而使其有效吸收X射线光子。铅围裙是用于保护患者免受不必要的暴露和放射学人员免受职业暴露的辐射保护服装。除了良好的辐射保护铅被认为是重金属,由这种材料制成的围裙可能繁琐而累人,尤其是长时间。也是铅是剧毒物质,如果不正确处理和处置,则带来环境和健康风险。研究人员正在积极探索辐射屏蔽围裙中铅的替代品,其材料具有钨,二硫酸钡,硫酸钡和某些聚合物复合材料以及某些由于其可比的辐射屏蔽效应而出现的潜在替代品,而毒性的毒性比铅低于铅。铅替代复合材料的三种组合W-SN-BA-PVC,W-SN-CD-PVC,Sn-GD-W-PVC在宽光束几何学的诊断放射学的能量范围内进行了研究。与含有复合材料的标准铅相比,在30-60 KEV和结果之间评估了这些材料在辐射衰减方面的辐射屏蔽效应。没有铅替代复合材料可在低Energie 30 KEV中提供更好的保护。复合W-SN-BA-PVC可提供相当大的衰减,但始终低于标准。复合材料W-SN-CD-PVC在40-60 KEV内显示出更好的衰减,而SN-GD-W-PVC在60 KEV时显示出更好的衰减。光电效应绝大多数主要主导了该能量范围内的能量转移和吸收。因此,铅替代复合屏蔽层可以有效地屏蔽40至60 KEV范围内的X射线能量。关键字:屏蔽效率,辐射屏蔽,铅的替代品,复合材料,蒙特卡洛模拟1。引入辐射屏蔽服装或铅围裙通常用于保护医疗患者和工人在医院,诊所和牙科办公室的诊断成像期间暴露于直接和继发辐射。使用类似的材料用于其他应用,例如用于保护在机场扫描仪或类似设备附近工作人员的行李扫描仪。在大多数这些环境中,典型的峰X射线能量范围为60至120 kVp,对应于大约35-60 keV的平均能量[1]。辐射屏蔽的有效性随成分材料的光电衰减系数,服装的厚度和辐射的能量谱[1]而有很大变化。传统上由铅制成的围裙已用于诊断放射学和介入试验中,因为它们在降低患者和操作员的辐射剂量方面具有非凡的效率。没有这些盾牌,直接接触电离辐射可能会导致健康组织中的生物学损害。尽管铅盾牌对减轻辐射剂量的有益,但对患者和辐射人员进行了疑问,但对长时间使用的安全性提出了疑问。证明了使用铅围裙的使用与背痛的发展之间的关系[3]。最近的一项研究由于铅的密度,这些盾牌是如此重,因此其携带是一项负担重大的任务,尤其是在长期过程中,例如在介入的血管造影中,如Moore等人。此外,由于铅是有毒元素,因此长期使用可能会危害用户的健康[4]。最近,研究人员对寻找重量较小且可能使用相同衰减的替代性无毒材料的兴趣增加,而不是铅来克服其质量和毒性问题[5]。